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Abstract. In the first part of the paper we give a satisfactory definition of the Stokes
operator in Lipschitz domains in Rn when boundary conditions of Neumann type are
considered. We then proceed to establish optimal global Sobolev regularity results for
vector fields in the domains of fractional powers of this Neumann-Stokes operator.

1. Introduction

Let Ω be a domain in Rn, n ≥ 2, and fix a finite number T > 0. The Navier-Stokes
equations are the standard system of PDE’s governing the flow of continuum matter in
fluid form, such as liquid or gas, occupying the domain Ω. These equations describe the
change with respect to time t ∈ [0, T ] of the velocity and pressure of the fluid. A widely
used version of the Navier-Stokes initial boundary problem, equipped with a Dirichlet
boundary condition, reads

(1.1)


∂~u

∂t
−∆x~u+∇xπ + (~u · ∇x)~u = 0 in (0, T ]× Ω,

divx ~u = 0 in [0, T ]× Ω,

Trx ~u = 0 on [0, T ]× ∂Ω,

~u(0) = ~u0 in Ω,

where ~u is the velocity field and π denotes the pressure of the fluid. One of the strategies
for dealing with (1.1), brought to prominence by the pioneering work of H. Fujita, and T.
Kato in the 60’s, consists of recasting (1.1) in the form of an abstract initial value problem

(1.2)


~u′(t) + (A~u)(t) = ~f(t) t ∈ (0, T ),
~f(t) := −PD

[
(~u(t) · ∇x)~u(t)

]
,

~u(0) = ~u0,

which is then converted into the integral equation

(1.3) ~u(t) = e−tA~u0 −
∫ t

0
e−(t−s)APD

[
(~u(s) · ∇x)~u(s)

]
ds, 0 < t < T,

then finally solving (1.3) via fixed point methods (typically, a Picard iterative scheme).
In this scenario, the operator PD is the Leray (orthogonal) projection of L2(Ω)n onto the

Supported in part by NSF and a UMC Miller Scholar Award
2000 Mathematics Subject Classification. Primary: 35Q30, 76D07, Secondary: 35A15, 35Q10, 76D03
Key words and phrases. Stokes operator, Neumann boundary conditions, Lipschitz domains, domain of
fractional power, regularity, Sobolev spaces, Navier-Stokes equations.

1



2 MARIUS MITREA, SYLVIE MONNIAUX AND MATTHEW WRIGHT

space HD := {~u ∈ L2(Ω)n : div ~u = 0 in Ω, ν · ~u = 0 on ∂Ω}, where ν is the outward unit
normal to Ω, and A is the Stokes operator, i.e. the Friedrichs extension of the symmetric
operator PD ◦ (−∆D), where ∆D is the Dirichlet Laplacian, to an unbounded self-adjoint
operator on the space HD.

By relying on the theory of analytic semigroups generated by self-adjoint operators,
Fujita and Kato have proved in [10] short time existence of strong solutions for (1.1) when
Ω ⊂ R3 is bounded and sufficiently smooth. Somewhat more specifically, they have shown
that if Ω is a bounded domain in R3 with boundary ∂Ω of class C3, and if the initial
datum ~u0 belongs to D(A

1
4 ), then a strong solution can be found for which ~u(t) ∈ D(A

3
4 )

for t ∈ (0, T ), granted that T is small. Hereafter, D(Aα), α > 0, stands for the domain of
the fractional power Aα of A.

An important aspect of this analysis is the ability to describe the size/smoothness of
vector fields belonging to D(Aα) in terms of more familiar spaces. For example, the
estimates (1.18) and (2.17) in [10] amount to

(1.4) D(Aγ) ⊂ Cα(Ω)3 if 3
4 < γ < 1 and 0 < α < 2(γ − 3

4),

which plays a key role in [10]. Although Fujita and Kato have proved (1.4) via ad hoc meth-
ods, it was later realized that a more resourceful and elegant approach to such regularity
results is to view them as corollaries of optimal embeddings for D(Aα), α > 0, into the
scale of vector-valued Sobolev (potential) spaces of fractional order, Lps(Ω)3, 1 < p < ∞,
s ∈ R. This latter issue turned out to be intimately linked to the smoothness assumptions
made on the boundary of the domain Ω. For example, Fujita and Morimoto have proved
in [11] that

(1.5) ∂Ω ∈ C∞ =⇒ D(Aα) ⊂ L2
2α(Ω)3, 0 ≤ α ≤ 1,

whereas the presence of a single conical singularity on ∂Ω may result in the failure of D(A)
to be included in L2

2(Ω)3.
The issue of extending the Fujita-Kato approach to the class of Lipschitz domains has

been recently resolved in [21]. In the process, several useful global Sobolev regularity
results for the vector fields in the fractional powers of the Stokes operator have been
established. For example, it has been proved in [21] that for any Lipschitz domain Ω in
R3,

D(A
3
4 ) ⊂ Lp3

p

(Ω)3 ∀ p > 2,(1.6)

∀α > 3
4 ∃ p > 3 such that D(Aα) ⊂ Lp1(Ω)3,(1.7)

D(Aγ) = L2
2γ,z(Ω)3 ∩HD, 0 < γ < 3

4 ,(1.8)

where, if s > 0, L2
s,z(Ω) is the subspace of L2

s(Ω) consisting of functions whose extension
by zero outside Ω belongs to L2

s(Rn). Also, it was shown in [21] that for any Lipschitz
domain Ω in R3 there exists ε = ε(Ω) > 0 such that

(1.9) 3
4 < γ < 3

4 + ε =⇒ D(Aγ) ⊂ C2γ−3/2(Ω)3,

in agreement with the Fujita-Kato regularity result (1.4).
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The aim of this paper is to derive analogous results in the case when Neumann-type
boundary conditions are considered in place of the Dirichlet boundary condition. Dictated
by specific practical considerations, several scenarios are possible. For example, the ‘no-
slip’ Neumann condition

(∇~u+∇~u>)ν − πν = 0 on (0, T )× ∂Ω,(1.10)

(recall that ν stands for the outward unit normal to ∂Ω) has been frequently used in the
literature. See, e.g., [28], [12] and the references therein. Another Neumann-type condition
of interest is

(∇~u)ν − πν = 0 on (0, T )× ∂Ω.(1.11)

This has been employed in [7] (in the stationary case). Here we shall work with a one-
parameter family of Neumann-type boundary conditions,

[(∇~u) + λ (∇~u)>]ν − πν = 0 on (0, T )× ∂Ω,(1.12)

indexed by λ ∈ (−1, 1] (in this context, (1.10), (1.11) correspond to choosing λ = 1 and
λ = 0, respectively). Much as in the case of the Fujita-Kato approach for (1.1), a basic
ingredient in the treatment of the initial Navier-Stokes boundary problem with Neumann
boundary conditions, i.e.,

(1.13)


∂~u

∂t
−∆x~u+∇xπ + (~u · ∇x)~u = 0 in (0, T ]× Ω,

divx ~u = 0 in [0, T ]× Ω,

[(∇x~u) + λ (∇x~u)>]ν − πν = 0 on [0, T ]× ∂Ω,

~u(0) = ~u0 in Ω,

is a suitable analogue of the Stokes operator A = PD ◦ (−∆D) discussed earlier. As a
definition for this, we propose taking the unbounded operator

Bλ : D(Bλ) ⊂ HN −→ HN ,(1.14)

where we have set HN := {~u ∈ L2(Ω)n : div ~u = 0 in Ω}, with domain

D(Bλ) :=
{
~u ∈ L2

1(Ω)n ∩HN : there exists π ∈ L2(Ω) so that −∆~u+∇π ∈ HN

and such that [(∇~u) + λ (∇~u)>]ν − πν = 0 on ∂Ω
}
,(1.15)

(with a suitable interpretation of the boundary condition) and acting according to

Bλ~u := −∆~u+∇π, ~u ∈ D(Bλ),(1.16)

In order to be able to differentiate this from the much more commonly used Stokes operator
A = PD ◦ (−∆D), we shall call the latter the Dirichlet-Stokes operator and refer to (1.15)-
(1.16) as the Neumann-Stokes operator.
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Let us now comment on the suitability of the Neumann-Stokes operator Bλ vis-a-vis
to the solvability of the initial Navier-Stokes system with Neumann boundary conditions
(1.13). To this end, denote by PN the orthogonal projection of L2(Ω)n onto the space
HN = {~u ∈ L2(Ω)n : div ~u = 0 in Ω}. In particular,

PN (∇q) = 0 for every q ∈ L2
1(Ω) with Tr q = 0 on ∂Ω.(1.17)

Proceed formally and assume that ~u, π solve (1.13) and that q solves the inhomogeneous
Dirichlet problem  ∆q = ∆π in Ω,

q
∣∣∣
∂Ω

= 0.
(1.18)

Then ∇π −∇q is divergence-free. Based on this and (1.17) we may then compute

PN (∇π) = PN (∇π −∇q) = ∇π −∇q = ∇(π − q).(1.19)

Since π−q has the same boundary trace as π, it follows that [(∇~u)+λ (∇~u)>]ν−(π−q)ν = 0
on ∂Ω. Consequently,

Bλ(~u) = −∆ ~u+∇(π − q) = PN (−∆ ~u+∇π).(1.20)

Thus, when PN is formally applied to the first line in (1.13) we arrive at the abstract
evolution problem

(1.21)


~u′(t) + (Bλ~u)(t) = ~f(t) t ∈ (0, T ),
~f(t) := −PN

[
(~u(t) · ∇x)~u(t)

]
,

~u(0) = ~u0,

which is the natural analogue of (1.2) in the current setting. This opens the door for
solving (1.13) by considering the integral equation

(1.22) ~u(t) = e−tBλ~u0 −
∫ t

0
e−(t−s)BλPN

[
(~u(s) · ∇x)~u(s)

]
ds, 0 < t < T.

In summary, the interest in the functional analytic properties of the Neumann-Stokes
operator Bλ in (1.15)-(1.16) is justified. In order to prevent the current paper from
becoming too long, we choose to treat the solvability of (1.22) in a separate publication
(cf. [22]) and confine ourselves here to establishing sharp global Sobolev regularity results
for vector fields in D(Bα

λ ), the domain of fractional powers of Bλ.
Our main results in this regard parallel those for the Dirichlet-Stokes operator which

have been reviewed in the first part of the introduction. For the sake of this introduction,
we wish to single out several such results. Concretely, for a Lipschitz domain Ω in Rn we
show that

(1.23) D(B
s
2
λ ) =

{
~u ∈ L2

s(Ω)n : div ~u = 0 in Ω
}

if 0 ≤ s ≤ 1,
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and

D(Bα
λ ) ⊂

⋃
p> 2n

n−1

Lp1(Ω)n if α > 3
4 .(1.24)

Also, when n = 3,

D(Bα
λ ) ⊂ C2α−3/2(Ω̄)3 if 3

4 < α < 3
4 + ε,(1.25)

D(B
3
4
λ ) ⊂ L3

1(Ω)3,(1.26)

and when n = 2,

D(Bα
λ ) ⊂ C2α−1(Ω̄)2 if 3

4 < α < 3
4 + ε,(1.27)

for some small ε = ε(Ω) > 0.
It should be noted that, in the case when ∂Ω ∈ C∞, the initial boundary value problem

(1.13) has been treated (when λ = 1) by G. Grubb in [12]. In this scenario, the departure
point is the regularity result D(B1) ⊂ L2

2(Ω)n, which nonetheless is utterly false in the
class of Lipschitz domains considered here.

Key ingredients in the proof of the regularity results (1.23)-(1.26) are the sharp results
for the well-posedness of the inhomogeneous problem for the Stokes operator equipped
with Neumann boundary conditions in a Lipschitz domain Ω in Rn, with data from Besov
and Triebel-Lizorkin spaces from [23]. This yields a clear picture of the nature of D(Bλ).
On the other hand, known abstract functional analytic results allow us to identify D(B1/2

λ ).
Starting from these, other intermediate fractional powers can then be treated by relying
on certain (non-standard) interpolation techniques.

The organization of the paper is as follows. In Section 2 we collect a number of pre-
liminary results of function theoretic nature. Section 3 is devoted to a discussion of
the meaning and properties of the conormal derivative [(∇~u) + λ (∇~u)>]ν − πν on ∂Ω
when Ω ⊂ Rn is a Lipschitz domain and ~u, π belong to certain Besov-Triebel-Lizorkin
spaces. Section 4 is reserved for a review of the definitions and properties of linear op-
erators associated with sesquilinear forms. Next, in Section 5, we collect some basic
abstract results about semigroups and fractional powers of self-adjoint operators. The
rigorous definition of the Neumann-Stokes operator Bλ is given in Section 6. Among
other things, here we show that Bλ is self-adjoint on HN and identify D(B1/2

λ ). The
scale V p,s(Ω) := {~u ∈ Lps(Ω)n : div ~u = 0} is investigated in Section 7 where we show
that, for certain ranges of indices, this is stable under complex interpolation and duality.
In Section 8 we record an optimal, well-posedness result for the Poisson problem for the
Stokes system with Neumann-type boundary conditions in Lipschitz domains, with data
from Besov-Triebel-Lizorkin spaces, recently established in [23]. Finally, in Section 9 and
Section 10, we investigate the global Sobolev regularity of vector fields belonging to D(Bα

λ )
for α ∈ [0, 1], when the underlying domain is Lipschitz.

Acknowledgments. This work has been completed while the authors had been visiting
Université Aix-Marseille 3 and the University of Missouri-Columbia, whose hospitality
they wish to gratefully acknowledge. The first named author is also greatly indebted to
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used in this paper.

2. Preliminaries

We shall call an open, bounded, nonempty set, with connected boundary Ω ⊂ Rn a
Lipschitz domain if for every point x∗ ∈ ∂Ω there is a rotation of the Euclidean coordinates
in Rn, a neighborhood O of x∗ and a Lipschitz function ϕ : Rn−1 → R such that

Ω ∩ O = {x = (x′, xn) ∈ Rn : xn > ϕ(x′)} ∩ O.(2.1)

In this scenario, we let dσ stand for the surface measure on ∂Ω, and denote by ν the
outward unit normal to ∂Ω. Next, for k ∈ N and p ∈ (1,∞), we recall the classical
Sobolev space

(2.2) Lpk(Ω) :=
{
f ∈ Lp(Ω) : ‖f‖Wk,p(Ω) :=

∑
|γ|≤k

‖∂γf‖Lp(Ω) <∞
}
,

and set

Lpk,z(Ω) := the closure of C∞c (Ω) in Lpk(Ω).(2.3)

Then for every k ∈ N and 1 < p, p′ <∞ with 1/p+ 1/p′ = 1, we have

Lp−k(Ω) :=
{∑
|γ|≤k

∂γfγ : fγ ∈ Lp(Ω)} =
(
Lp
′

k,z(Ω)
)∗
.(2.4)

Moving on, for s ∈ (0, 1), 1 ≤ p ≤ ∞, denote by

(2.5) Bp,p
s (∂Ω) :=

{
f ∈ Lp(∂Ω) :

(∫
∂Ω

∫
∂Ω

|f(x)− f(y)|p

|x− y|n−1+sp
dσxdσy

) 1
p
< +∞

}
,

the Besov class on ∂Ω. We equip this with the natural norm ‖f‖Bp,ps (∂Ω) := ‖f‖Lp(∂Ω) +(∫
∂Ω

∫
∂Ω
|f(x)−f(y)|p
|x−y|d−1+sp dσxdσy

)1/p
. For s ∈ (0, 1) and 1 < p, p′ <∞ with 1/p+ 1/p′ = 1, we

also set

Bp,p
−s (∂Ω) :=

(
Bp′,p′
s (∂Ω)

)∗
.(2.6)

In the sequel, we shall occasionally write L2
s(∂Ω) in place of B2,2

s (∂Ω) for s ∈ (−1, 1).
Recall that if p ∈ (1,∞) and Ω ⊂ Rn is a Lipschitz domain, then the trace operator

(2.7) Tr : Lp1(Ω) −→ Bp,p
1−1/p(∂Ω)

is well-defined, linear and bounded.
Next, introduce

H := {~u ∈ L2(Ω)n : div ~u = 0 in Ω}(2.8)
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which is a closed subspace of L2(Ω)n (hence, a Hilbert space when equipped with the norm
inherited from L2(Ω)n). Also, set

V := L2
1(Ω)n ∩H(2.9)

which is a closed subspace of L2
1(Ω)n hence, a reflexive Banach space when equipped with

the norm inherited from L2
1(Ω)n.

Lemma 2.1. If Ω ⊂ Rn is a Lipschitz domain then

V ↪→ H continuously and densely.(2.10)

Proof. The continuity of the inclusion mapping in (2.10) is obvious. To prove that this
has a dense range, fix ~u ∈ H. Then it has been proved in [16] that there exists a smooth
domain O and ~w ∈ L2(O)n with the following properties:

Ω ⊂ O, div ~w = 0 in O, ~w
∣∣
Ω

= u.(2.11)

In analogy with (2.8), (2.9), set

H(O) := {~v ∈ L2(O)n : div~v = 0 in O}, V(O) := L2
1(O)n ∩H(O).(2.12)

Then the following Hodge-Helmholtz-Weyl decompositions are valid

L2
1(O)n = V(O)⊕∇

[
L2

2(O) ∩ L2
1,z(O)

]
,(2.13)

L2(O)n = H(O)⊕
[
∇L2

1,z(O)
]
.(2.14)

These can be obtained constructively as follows. Granted that O is a smooth domain (here,
it suffices to have ∂O ∈ C1,r for some r > 1/2), the Poisson problem with homogeneous
Dirichlet boundary condition {

∆q = f ∈ L2(O),

q ∈ L2
2(O) ∩ L2

1,z(O),
(2.15)

is well-posed, and we denote by

G : L2(O) −→ L2
2(O) ∩ L2

1,z(O), Gf = q,(2.16)

the solution operator associated with (2.15). By the Lax-Milgram lemma, the latter further
extends to a bounded, self-adjoint operator

G : L2
−1(O) −→ L2

1,z(O).(2.17)

With I denoting the identity operator, if we now consider

P := I −∇ ◦G ◦ div,(2.18)

then in each instance below
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P : L2
1(O)n −→ V(O), P : L2(O)n −→ H(O),(2.19)

P is a well-defined, linear and bounded operator. Furthermore, in the second case in
(2.19), P actually acts as the orthogonal projection. Indeed, this is readily verified using
the fact that

P = P ∗ in L2(O)n and P
∣∣∣
H(O)

= I, the identity operator.(2.20)

The Hodge-Helmholtz-Weyl decompositions (2.13)-(2.14) are then naturally induced by
decomposing the identity operator according to

I = P +∇ ◦G ◦ div,(2.21)

both on L2
1(O)n and on L2(O)n.

After this preamble, we now turn to the task of establishing (2.10). Choose a sequence
~wj ∈ L2

1(O)n, j ∈ N, such that ~wj → ~w in L2(O)n as j → ∞. Then ~w = P ~w =
limj→∞ P ~wj in L2(O)n and ~uj := [P ~wj ]|Ω ∈ V for every j ∈ N. Since these considerations
imply that ~u = ~w|Ω = limj→∞ ~uj in L2(Ω)n, (2.10) follows. �

Remark. An inspection of the above proof shows that, via a similar argument, we have
that

P : C∞(Ω) ↪→ H∩ C∞(Ω) boundedly.(2.22)

Thus, ultimately,

{~u ∈ C∞(Ω)n : div ~u = 0 in Ω} ↪→ H densely.(2.23)

Next, we introduce the following closed subspace of L2
1/2(∂Ω)n:

L2
1/2,ν(∂Ω) :=

{
~ϕ ∈ L2

1/2(∂Ω)n :
∫
∂Ω
ν · ~ϕ dσ = 0

}
.(2.24)

Our goal is to show that the trace operator from (2.7) extends to a bounded mapping

Tr : V −→ L2
1/2,ν(∂Ω)(2.25)

which is onto. In fact, it is useful to prove the following more general result.

Lemma 2.2. Assume that Ω ⊂ Rn is a Lipschitz domain, with outward unit normal ν
and surface measure dσ. Also, fix 1 < p < ∞ and s ∈ (1/p, 1 + 1/p). Then the trace
operator from (2.7) extends to a bounded mapping

Tr :
{
~u ∈ Lps(Ω)n : div ~u = 0

}
−→

{
~ϕ ∈ Bp,p

s−1/p(∂Ω)n :
∫
∂Ω
ν · ~ϕ dσ = 0

}
,(2.26)

which is onto.
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Proof. The fact that (2.26) is well-defined, linear and bounded is clear from the properties
of (2.7) and the fact that ∫

∂Ω
ν · Tr ~u dσ =

∫
Ω

div ~u dx = 0,(2.27)

whenever ~u ∈ Lps(Ω)n is divergence-free. To see that (2.26) is also onto, consider ~ϕ ∈
Bp,p
s−1/p(∂Ω)n satisfying ∫

∂Ω
ν · ~ϕ dσ = 0(2.28)

and solve the divergence equation


div ~u = 0 in Ω,

~u ∈ Lps(Ω)n,

Tr ~u = ~ϕ on ∂Ω.

(2.29)

For a proof of the fact that this is solvable for any ~ϕ ∈ Bp,p
s−1/p(∂Ω)n satisfying (2.28) see

[19]. This shows that the operator (2.26) is indeed onto. �

Moving on, for λ ∈ R fixed, let

(2.30) aαβjk (λ) := δjkδαβ + λ δjβδkα, 1 ≤ j, k, α, β ≤ n,

and, adopting the summation convention over repeated indices, consider the differential
operator Lλ given by

(Lλ~u)α := ∂j(a
αβ
jk (λ)∂kuβ) = ∆uα + λ∂α(div ~u), 1 ≤ α ≤ n.(2.31)

Next, assuming that λ ∈ R and ~u, π are sufficiently nice functions in a Lipschitz domain
Ω ⊂ Rn with outward unit normal ν, define the conormal derivative

∂λν (~u, π) :=
(
νja

αβ
jk (λ)∂kuβ − ναπ

)
1≤α≤n

=
[
(∇~u)> + λ(∇~u)

]
ν − πν on ∂Ω,(2.32)

where ∇~u = (∂kuj)1≤j,k≤n denotes the Jacobian matrix of the vector-valued function ~u,
and > stands for transposition of matrices. Introducing the bilinear form

Aλ(ξ, ζ) := aαβjk (λ)ξαj ζ
β
k , ∀ ξ, ζ n× n matrices,(2.33)

we then have the following useful integration by parts formula:

(2.34)
∫

Ω
〈Lλ~u−∇π, ~w〉 dx =

∫
∂Ω
〈∂λν (~u, π), ~w〉 dσ −

∫
Ω

{
Aλ(∇~u,∇~w)− π(div ~w)

}
dx.

In turn, this readily implies that
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∫
Ω

〈Lλ~u−∇π, ~w〉 dx−
∫
Ω

〈Lλ ~w −∇ρ, ~u〉 dx =
∫
∂Ω

{
〈∂λν (~u, π), ~w〉 − 〈∂λν (~w, ρ), ~u〉

}
dσ

+
∫
Ω

{
π(div ~w)− ρ(div ~u)

}
dx.(2.35)

Above, it is implicitly assumed that the functions involved are reasonably behaved near
the boundary. Such considerations are going to be paid appropriate attention to in each
specific application of these integration by parts formulas.

3. Conormal derivative in Besov-Triebel-Lizorkin spaces

For 0 < p, q ≤ ∞ and s ∈ R, we denote the Besov and Triebel-Lizorkin scales in Rn by
Bp,q
s (Rn) and F p,qs (Rn), respectively (cf., e.g., [30]). Next, given Ω ⊂ Rn Lipschitz domain

and 0 < p, q ≤ ∞, α ∈ R, we set

(3.1)

Ap,qα (Ω) := {u ∈ D′(Ω) : ∃ v ∈ Ap,qα (Rn) with v|Ω = u},
Ap,qα,0(Ω) := {u ∈ Ap,qα (Rn) with suppu ⊆ Ω},
Ap,qα,z(Ω) := {u|Ω : u ∈ Ap,qα,0(Ω)},

where A ∈ {B,F}. Finally, we let Bp,q
s (∂Ω) stand for the Besov class on the Lipschitz

manifold ∂Ω, obtained by transporting (via a partition of unity and pull-back) the standard
scale Bp,q

s (Rn−1). We shall frequently use the abbreviation

Lps(Ω) := F p,2s (Ω), 1 < p <∞, s ∈ R.(3.2)

As is well-known, this is consistent with (2.2) and (2.4).
The existence of a universal linear extension operator, from Lipschitz domains to the

entire Euclidean space, which preserves smoothness both on the Besov and the Triebel-
Lizorkin scales has been established by V. Rychkov. In [27], he proved the following:

Theorem 3.1. Let Ω ⊂ Rn be a Lipschitz domain. Then there exists a linear, continuous
operator EΩ, mapping distributions in Ω into tempered distributions in Rn, such that
whenever 0 < p, q ≤ +∞, s ∈ Rn, then

(3.3) EΩ : Ap,qs (Ω) −→ Ap,qs (Rn) boundedly, satisfying RΩ ◦ EΩf = f, ∀ f ∈ Ap,qs (Ω),

for A = B or A = F , in the latter case assuming p <∞.

Let us also record here a useful lifting result for fractional order Sobolev spaces on Lipschitz
domains, which has been proved in [19].

Proposition 3.2. Let 1 < p <∞ and s ∈ R. Then for any distribution u in the Lipschitz
domain Ω ⊂ Rn, the following implication holds:

(3.4) ∇u ∈ Lps−1(Ω,Rn) =⇒ u ∈ Lps(Ω).

The following useful consequence of Proposition 3.2 (cf. [23] for a direct proof) will be
used frequently in this paper.
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Corollary 3.3. Let Ω ⊂ Rn, n ≥ 2, be a Lipschitz domain and suppose that 1 < p <∞.
Then there exists a finite constant C > 0 depending only on n, p, and the Lipschitz
character of Ω such that every distribution u ∈ Lp−1(Ω) with ∇u ∈ Lp−1(Ω)n has the
property that u ∈ Lp(Ω) and

(3.5) ‖u‖Lp(Ω) ≤ C‖∇u‖Lp−1(Ω)n + C diam (Ω) ‖u‖Lp−1(Ω)

holds.

Later on, we shall need duality results for the scales introduced at the beginning of
this section. Throughout, all duality pairings on Ω are extensions of the natural pairing
between test functions and distributions on Ω. As far as the nature of the dual of Lps(Ω)
is concerned, when 1 < p, p′ <∞, 1/p+ 1/p′ = 1 and s ∈ R we have that

C̃∞c (Ω) 3 ϕ̃ 7−→ ϕ ∈ C∞c (Ω) extends to

an isomorphism Ψ : Lps,0(Ω) −→
(
Lp
′

−s(Ω)
)∗
.(3.6)

Other duality results of interest are

(
Lps,z(Ω)

)∗
= Lp

′

−s(Ω) if 1 < p <∞ and s > −1 + 1
p ,(3.7)

and

(
Lps(Ω)

)∗
= Lp

′

−s,z(Ω) if 1 < p <∞ and s < 1
p .(3.8)

In particular,

(3.9)
(
Lps(Ω)

)∗
= Lp

′

−s(Ω), ∀ s ∈ (−1 + 1/p, 1/p).

See the discussion in [21].
Moving on, we shall need a refinement of (2.7) in the context of of Besov and Triebel-

Lizorkin spaces. To state this result, let (a)+ := max {a, 0}.

Proposition 3.4. Let Ω be a Lipschitz domain in Rn and assume that the indices p, s
satisfy n−1

n < p ≤ ∞ and (n− 1)(1
p − 1)+ < s < 1. Then the following hold:

(i) The restriction to the boundary extends to a linear, bounded operator

(3.10) Tr : Bp,q

s+ 1
p

(Ω) −→ Bp,q
s (∂Ω) for 0 < q ≤ ∞.

For this range of indices, Tr is onto and has a bounded right inverse

(3.11) Ex : Bp,q
s (∂Ω) −→ Bp,q

s+ 1
p

(Ω).

As far as the null-space of (3.10) is concerned, if n−1
n < p <∞, (n−1)(1/p−1)+ < s < 1

and 0 < q <∞, then
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(3.12) Bp,q
s+1/p,z(Ω) =

{
u ∈ Bp,q

s+1/p(Ω) : Tru = 0
}
,

and

(3.13) C∞c (Ω) ↪→ Bp,q
s+1/p,z(Ω) densely.

(ii) Similar considerations hold for

(3.14) Tr : F p,q
s+ 1

p

(Ω) −→ Bp,p
s (∂Ω)

with the convention that q = ∞ if p = ∞. More specifically, Tr in (3.14) is a linear,
bounded, operator which has a linear, bounded right inverse

(3.15) Ex : Bp,p
s (∂Ω) −→ F p,q

s+ 1
p

(Ω).

Also, if n−1
n < p <∞, (n− 1)(1/p− 1)+ < s < 1 and min {1, p} ≤ q <∞, then

(3.16) F p,qs+1/p,z(Ω) =
{
u ∈ F p,qs+1/p(Ω) : Tru = 0

}
,

and

(3.17) C∞c (Ω) ↪→ F p,qs+1/p,z(Ω) densely.

Let X be a Banach space with dual X∗. For every n × n matrix F = (Fαj )α,j with
entries from X, every n × n matrix G = (Gβk)β,k with entries from X∗, and each λ ∈ R,
we set

AX
λ (F,G) := aαβjk (λ) X〈Fαj , G

β
k〉X∗ ,(3.18)

where X〈·, ·〉X∗ is the duality pairing between X and X∗, and aαβjk (λ) are as in (2.30). In
the sequel, our notation will not emphasize the dependence of 〈·, ·〉 and Aλ on X; however,
the particular nature of X should be clear from the context in each case.

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain and assume that 1 < p, q < ∞,
0 < s < 1. If ~u ∈ Bp,q

s+ 1
p

(Ω)n, π ∈ Bp,q

s+ 1
p
−1

(Ω) and ~f ∈ Bp,q

s+ 1
p
−2,0

(Ω)n are such that

∆~u−∇π = ~f |Ω in Ω, then as suggested by (2.35), it is natural to define

(3.19) ∂λν (~u, π)~f ∈ B
p,q
s−1(∂Ω) =

(
Bp′,q′

1−s (∂Ω)
)∗
, 1/p+ 1/p′ = 1, 1/q+ 1/q′ = 1, λ ∈ R,

by setting 〈
∂λν (~u, π)~f ,

~ψ
〉

:=
〈
~f,Ex(~ψ)

〉
+ Aλ

(
∇~u,∇Ex(~ψ)

)
−
〈
π,div Ex(~ψ)

〉
, ∀ ~ψ ∈ Bp′,q′

1−s (∂Ω)n,(3.20)
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where Ex is the extension operator introduced in Proposition 3.4. The conditions on
the indices p, q, s ensure that all duality pairings in the right-hand side of (3.20) are
well-defined. Similar considerations apply to the case when ~u, π, ~f belong to approri-
ate Triebel-Lizorkin spaces (in which case the conormal ∂λν (~u, π)~f belongs to a suitable
diagonal boundary Besov space).

Remark. Since the conormal ∂λν (~u, π)~f has been defined for a class of (triplets of) func-

tions ~u, π, ~f for which the expression
[
(∇~u)>+λ(∇~u)

]
ν−πν is, in the standard sense of the

trace theory, utterly ill-defined on ∂Ω, it is appropriate to remark that (~u, π, ~f) 7→ ∂λν (~u, π)~f
is not an extension of the operation (~u, π, ) 7→ Tr

[
(∇~u)>+λ(∇~u)

]
ν−Trπ ν in an ordinary

sense. In fact, it is more appropriate to regard the former as a “renormalization” of the
latter trace, in a fashion that depends strongly on the choice of ~f ∈ Ap,qs+1/p−2,0(Ω)n as an
extension of ∆ ~u−∇π ∈ Ap,qs+1/p−2,z(Ω)n.

To further shed light on this issue, recall that, for ~u ∈ L2
1(Ω)n, π ∈ L2(Ω), ∆~u − ∇π

is naturally defined as a linear functional in (L2
1,0(Ω)n)∗. The choice of ~f is the choice

of an extension of this linear functional to a functional in (L2
1(Ω)n)∗ = L2

−1,0(Ω)n. As
an example, consider ~u ∈ L2

1(Ω)n, π ∈ L2(Ω), and suppose that actually ~u ∈ L2
2(Ω),

π ∈ L2
1(Ω) so Tr

[
(∇~u)> + λ(∇~u)

]
ν − Trπ ν is well defined in L2(∂Ω)n. In this case,

∆~u −∇π ∈ L2(Ω)n has a “natural” extension ~f0 ∈ L2
−1,0(Ω)n (i.e., ~f0 is the extension of

∆~u−∇π to Rn by setting this equal zero outside Ω). Any other extension ~f1 ∈ L2
−1,0(Ω)n

differs from ~f0 by a distribution ~η ∈ L2
−1(Rn)n supported on ∂Ω. As is well-known, the

space of such distributions is nontrivial. In fact, we have

∂λν (~u, π)~f0 = Tr
[
(∇~u)> + λ(∇~u)

]
ν − Trπ ν in L2(∂Ω)n,(3.21)

but if ~η 6= 0 then ∂λν (~u, π)~f0 is not equal to ∂λν (~u, π)~f1 . Indeed, by linearity we have that

∂λν (~u, π)~f1 = ∂λν (~u, π)~f0 + ∂λν (~0, 0)~η and (3.20) shows that〈
∂λν (~0, 0)~η, ~ψ

〉
=
〈
~η,Ex(~ψ)

〉
(3.22)

for every ~ψ ∈ L2
1/2(∂Ω)n. Consequently, ∂λν (~0, 0)~η 6= 0 if ~η 6= 0.

We continue by registring an natural integration by parts formula, which builds on the
definition of the “renormalized” conormal (3.20).

Proposition 3.5. Assume that Ω ⊂ Rn is a Lipschitz domain. Fix s ∈ (0, 1), as well as
1 < p, q <∞, and denote by p′, q′ the Hölder conjugate exponents of p and q, respectively.

Next, suppose that ~w ∈ Ap
′q′

1−s+1/p′(Ω)n, ~u ∈ Ap,q
s+ 1

p

(Ω)n, π ∈ Ap,q
s+ 1

p
−1

(Ω) and ~f ∈

Ap,q
s+ 1

p
−2,0

(Ω)n are such that ∆~u − ∇π = ~f |Ω in Ω (where, as usual, A ∈ {B,F}). Then,

for every λ ∈ R, the following integration by parts formula holds:〈
∂λν (~u, π)~f , Tr ~w

〉
=
〈
~f, ~w

〉
+ Aλ

(
∇~u,∇~w

)
−
〈
π,div ~w

〉
.(3.23)
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Proof. By linearity, it suffices to show that〈
~f, ~w

〉
+ Aλ

(
∇~u,∇~w

)
−
〈
π,div ~w

〉
= 0(3.24)

if ~w, ~u, π, ~f are as in the statement of the proposition and, in addition, Tr ~w = 0. Note
that the latter condition entails that ~w ∈ Ap

′,q′

1−s,z(Ω)n by (3.12), (3.16). Thus, by (3.13),

(3.17), ~w can be approximated in Ap
′,q′

1−s,z(Ω)n by a sequence of vector fields ~wj ∈ C∞c (Ω)n.
Since, thanks to the fact that ∆~u−∇π = ~f |Ω as distributions in Ω, we have〈

~f, ~wj

〉
+ Aλ

(
∇~u,∇~wj

)
−
〈
π,div ~wj

〉
= 0, j ∈ N,(3.25)

we can obtain (3.24) by letting j →∞. �

In order to continue, we introduce the scales

(3.26) Bp,qs (Ω) :=
{

(~u, π, ~f) ∈ Bp,q

s+ 1
p

(Ω)⊕Bp,q

s+ 1
p
−1

(Ω)⊕Bp,q

s+ 1
p
−2,0

(Ω) : ∆~u−∇π = ~f |Ω
}
,

and

(3.27) Fp,qs (Ω) :=
{

(~u, π, ~f) ∈ F p,q
s+ 1

p

(Ω)⊕ F p,q
s+ 1

p
−1

(Ω)⊕ F p,q
s+ 1

p
−2,0

(Ω) : ∆~u−∇π = ~f |Ω
}
.

Corollary 3.6. Suppose that Ω ⊂ Rn is a Lipschitz domain, and assume that s ∈ (0, 1),
1 < p, q <∞, 1/p+ 1/p′ = 1/q + 1/q′ = 1. Then

〈
~f, ~w

〉
−
〈
~g, ~u
〉

=
〈
∂λν (~u, π)~f , Tr ~w

〉
−
〈
∂λν (~w, ρ)~g , Tr ~u

〉
+
〈
π,div ~w

〉
−
〈
ρ, div ~u

〉
(3.28)

provided either

(~u, π, ~f) ∈ Bp,qs (Ω), (~w, ρ,~g) ∈ Bp
′,q′

1−s (Ω),(3.29)

or

(~u, π, ~f) ∈ Fp,qs (Ω), (~w, ρ,~g) ∈ Fp
′,q′

1−s (Ω).(3.30)

Proof. This follows from (3.23) much as (2.35) follows from (2.34). �

4. Sesquilinear forms and their associated operators

In this section we describe a few basic facts on sesquilinear forms and linear operators
associated with them. Throughout, given two Banach spaces X , Y, we denote by B

(
X ,Y

)
the space of linear, bounded operators from X into Y, equipped with the strong operator
norm. Also, we let IX stand for the identity operator on X . Finally, we adopt the
convention that if X is a Banach space then X ∗ denotes the adjoint space of continuous
conjugate linear functionals on X , also known as the conjugate dual of X . In this scenario,
we let X 〈·, ·〉X ∗ denote the duality pairing between X and X ∗.
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Let H be a complex separable Hilbert space with scalar product (·, ·)H (antilinear in
the first and linear in the second argument), V a reflexive Banach space continuously and
densely embedded into H. Then also H embeds continuously and densely into V∗, i.e.,

(4.1) V ↪→ H ↪→ V∗ continuously and densely.

Here the continuous embedding H ↪→ V∗ is accomplished via the identification

(4.2) H 3 u 7→ (·, u)H ∈ V∗.
In particular, if the sesquilinear form

(4.3) V〈·, ·〉V∗ : V × V∗ → C
denotes the duality pairing between V and V∗, then

(4.4) V〈u, v〉V∗ = (u, v)H, u ∈ V, v ∈ H ↪→ V∗,
that is, the V,V∗ pairing V〈·, ·〉V∗ is compatible with the scalar product (·, ·)H in H.

Let T ∈ B(V,V∗). Since V is reflexive, i.e. (V∗)∗ = V, one has

(4.5) T : V → V∗, T ∗ : V → V∗

and

(4.6) V〈u, Tv〉V∗ = V∗〈T ∗u, v〉(V∗)∗ = V∗〈T ∗u, v〉V = V〈v, T ∗u〉V∗ .
Self-adjointness of T is then defined as the property that T = T ∗, that is,

(4.7) V〈u, Tv〉V∗ = V∗〈Tu, v〉V = V〈v, Tu〉V∗ , u, v ∈ V,
nonnegativity of T is defined as the demand that

(4.8) V〈u, Tu〉V∗ ≥ 0, u ∈ V,
and boundedness from below of T by c ∈ R is defined as the property that

(4.9) V〈u, Tu〉V∗ ≥ c‖u‖2H, ∀u ∈ V.
(Note that, by (4.4), this is equivalent to V〈u, Tu〉V∗ ≥ c V〈u, u〉V∗ for all u ∈ V.)

Next, let the sesquilinear form a(·, ·) : V × V → C (antilinear in the first and linear in
the second argument) be V-bounded. That is, there exists a ca > 0 such that

(4.10) |a(u, v)| ≤ ca‖u‖V‖v‖V , u, v ∈ V.

Then Ã defined by

(4.11) Ã :

{
V → V∗,

v 7→ Ãv = a(·, v),
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satisfies

(4.12) Ã ∈ B(V,V∗) and V
〈
u, Ãv

〉
V∗ = a(u, v), u, v ∈ V.

In the sequel, we shall refer to Ã as the operator induced by the form a(·, ·).
Assuming further that a(·, ·) is symmetric, that is,

(4.13) a(u, v) = a(v, u), u, v ∈ V,
and that a is V-coercive, that is, there exists a constant C0 > 0 such that

(4.14) a(u, u) ≥ C0‖u‖2V , u ∈ V,
respectively, then,

(4.15) Ã : V → V∗ is bounded, self-adjoint, and boundedly invertible.

Moreover, denoting by A the part of Ã in H, defined by

D(A) :=
{
u ∈ V : Ãu ∈ H

}
⊆ H, A := Ã

∣∣
D(A)

: D(A)→ H,(4.16)

then A is a (possibly unbounded) self-adjoint operator in H satisfying

A ≥ C0IH,(4.17)

D
(
A1/2

)
= V.(4.18)

In particular,

(4.19) A−1 ∈ B(H).

The facts (4.1)–(4.19) are a consequence of the Lax–Milgram theorem and the sec-
ond representation theorem for symmetric sesquilinear forms. Details can be found, for
instance, in [2, §VI.3, §VII.1], [6, Ch. IV], and [17].

Next, consider a symmetric form b(·, ·) : V × V → C and assume that b is bounded from
below by cb ∈ R, that is,

(4.20) b(u, u) ≥ cb‖u‖2H, u ∈ V.
Introducing the scalar product (·, ·)V(b) : V × V → C (with associated norm ‖ · ‖V(b)) by

(4.21) (u, v)V(b) := b(u, v) + (1− cb)(u, v)H, u, v ∈ V,

turns V into a pre-Hilbert space (V; (·, ·)V(b)), which we denote by V(b). The form b is
called closed if V(b) is actually complete, and hence a Hilbert space. The form b is called
closable if it has a closed extension. If b is closed, then

(4.22) |b(u, v) + (1− cb)(u, v)H| ≤ ‖u‖V(b)‖v‖V(b), u, v ∈ V,
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and

(4.23) |b(u, u) + (1− cb)‖u‖2H| = ‖u‖2V(b), u ∈ V,

show that the form b(·, ·) + (1 − cb)(·, ·)H is a symmetric, V-bounded, and V-coercive
sesquilinear form.

Hence, by (4.11) and (4.12), there exists a linear map

(4.24) B̃cb :

{
V(b)→ V(b)∗,

v 7→ B̃cbv := b(·, v) + (1− cb)(·, v)H,

with

(4.25) B̃cb ∈ B(V(b),V(b)∗) and V(b)

〈
u, B̃cbv

〉
V(b)∗

= b(u, v) + (1− cb)(u, v)H, u, v ∈ V.

Introducing the linear map

(4.26) B̃ := B̃cb + (cb − 1)Ĩ : V(b)→ V(b)∗,

where Ĩ : V(b) ↪→ V(b)∗ denotes the continuous inclusion (embedding) map of V(b) into
V(b)∗, one obtains a self-adjoint operator B in H by restricting B̃ to H,

D(B) =
{
u ∈ V : B̃u ∈ H

}
⊆ H, B = B̃

∣∣
D(B)

: D(B)→ H,(4.27)

satisfying the following properties:

B ≥ cbIH,(4.28)

D
(
|B|1/2

)
= D

(
(B − cbIH)1/2

)
= V,(4.29)

b(u, v) =
(
|B|1/2u, UB|B|1/2v

)
H(4.30)

=
(
(B − cbIH)1/2u, (B − cbIH)1/2v

)
H + cb(u, v)H(4.31)

= V(b)

〈
u, B̃v

〉
V(b)∗

, u, v ∈ V,(4.32)

b(u, v) = (u,Bv)H, u ∈ V, v ∈ D(B),(4.33)

D(B) = {v ∈ V : there exists fv ∈ H such that

b(w, v) = (w, fv)H for all w ∈ V},(4.34)

Bu = fu, u ∈ D(B),

D(B) is dense in H and in V(b).(4.35)

Properties (4.34) and (4.35) uniquely determine B. Here UB in (4.31) is the partial
isometry in the polar decomposition of B, that is,

(4.36) B = UB|B|, |B| = (B∗B)1/2.
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Definition 4.1. The operator B is called the operator associated with the form b(·, ·).

The norm in the Hilbert space V(b)∗ is given by

(4.37) ‖`‖V(b)∗ = sup{|V(b)〈u, `〉V(b)∗ : ‖u‖V(b) ≤ 1}, ` ∈ V(b)∗,

with associated scalar product,

(4.38) (`1, `2)V(b)∗ = V(b)

〈(
B̃ + (1− cb)Ĩ

)−1
`1, `2

〉
V(b)∗

, `1, `2 ∈ V(b)∗.

Since

(4.39)
∥∥(B̃ + (1− cb)Ĩ

)
v
∥∥
V(b)∗

= ‖v‖V(b), v ∈ V,

the Riesz representation theorem yields

(4.40)
(
B̃ + (1− cb)Ĩ

)
∈ B(V(b),V(b)∗) and

(
B̃ + (1− cb)Ĩ

)
: V(b)→ V(b)∗ is unitary.

In addition,

V(b)

〈
u,
(
B̃ + (1− cb)Ĩ

)
v
〉
V(b)∗

=
((
B + (1− cb)IH

)1/2
u,
(
B + (1− cb)IH

)1/2
v
)
H

= (u, v)V(b), u, v ∈ V(b).
(4.41)

In particular,

(4.42)
∥∥(B + (1− cb)IH)1/2u

∥∥
H = ‖u‖V(b), u ∈ V(b),

and hence

(4.43) (B + (1− cb)IH)1/2 ∈ B(V(b),H) and (B + (1− cb)IH)1/2 : V(b)→ H is unitary.

The facts (4.20)–(4.43) comprise the second representation theorem of sesquilinear forms
(cf. [6, Sect. IV.2], [9, Sects. 1.2–1.5], and [15, Sect. VI.2.6]).

5. Fractional powers and semigroup theory

Assume that H is a (possibly complex) separable Hilbert space with scalar product
(·, ·)H and that V a reflexive Banach space continuously and densely embedded into H.
Also, fix a sesquilinear form b(·, ·) : V × V → C, which is assumed to be symmetric,
nonnegative, bounded, and which satisfies the following coercivity condition: There exist
C0 ∈ R and C1 > 0 such that

b(u, u) + C0‖u‖2H ≥ C1‖u‖2V , u ∈ V.(5.1)

As a consequence, ‖ · ‖V(b) ≈ ‖ · ‖V . Thus V(b) = V and, hence, b(·, ·) is also closed.
Let B : D(B) ⊆ H → H be the (possibly unbounded) operator associated with the form

b(·, ·) as in Definition 4.1. In particular, B is self-adjoint and nonnegative. Also, tIH +B
is invertible on H for every t > 0, and ‖t(tIH + B)−1‖B(H,H) ≤ C for t > 0 (cf., e.g.,
Proposition 1.22 on p. 13 in [24]). In fact, there exist θ ∈ (0, π/2) and a finite constant
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C > 0 such that Σθ := {z ∈ C : |arg (z − 1)| ≤ θ + π/2} is contained in C \ Spec (B)
(where Spec (B) denotes the spectrum of B as an operator on H) and

(5.2) ‖(zIH +B)−1‖B(H,H) ≤
C

1 + |z|
, z ∈ Σθ,

i.e., B is sectorial. See, e.g., Theorem 3 on p. 374 and Proposition 3 on p. 380 in [3]. In
particular, the operator B generates an analytic semigroup on H according to the formula

(5.3) ezBu :=
1

2πi

∫
Γθ′

e−ζz(ζIH +B)−1u dζ, |arg (z)| < π/2− θ′, u ∈ H,

where θ′ ∈ (θ, π/2) and Γθ′ := {± reiθ′ : r > 0}. Cf. [3] and [25] for a more detailed
discussion in this regard.

Moving on, we denote by {EB(µ)}µ∈R the family of spectral projections associated with
B, and for each u ∈ H introduce the function ρu by

(5.4) ρu : R −→ [0,∞), ρu(µ) := (EB(µ)u, u)H = ‖EB(µ)u‖2H.
Clearly, ρu is bounded, non-decreasing, right-continuous, and

(5.5) lim
µ↓−∞

ρu(µ) = 0, lim
µ↑∞

ρu(µ) = ‖u‖2H, ∀u ∈ H.

Hence, ρu generates a measure, denoted by dρu, in a canonical manner. A function
f : R → C is then called dEB-measurable if it is dρu-measurable for each u ∈ H. As is
well-known, all Borel measurable functions are dEB-measurable functions. For a Borel
measurable function f : R → C we then define the (possibly) unbounded operator by
setting

D(f(B)) :=
{
u ∈ H :

∫
R |f | dρu < +∞

}
f(B)u :=

∫
R f(µ) dEB(µ)u, u ∈ D(f(B)).

(5.6)

In particular, for each α ∈ [0, 1], the fractional power Bα of B is a self-adjoint operator

Bα : D(Bα) ⊂ H −→ H.(5.7)

Since in our case B is maximally accretive, then so is Bα if α ∈ (0, 1) and for every
u ∈ D(B) ⊂ D(Bα) we have the representation

(5.8) Bαu =
sin (π z)

π

∫ ∞
0

tαB(tIH +B)−1u
dt

t
.

See [13], [15]. Other properties are discussed in, e.g., Pazy’s book [25], to which we refer
the interested reader. Here we only wish to summarize some well-known results of T. Kato
and J.-L. Lions (see [14], [17]) which are relevant for our work. Specifically, if B is as
above, then

(5.9) D(B1/2) = V



20 MARIUS MITREA, SYLVIE MONNIAUX AND MATTHEW WRIGHT

and, with [·, ·]θ denoting the complex interpolation bracket,

(5.10) D(Bθ) = [H, D(B)]θ, 0 ≤ θ ≤ 1.

Hence, by the reiteration theorem for the complex method, the family

(5.11)
{
D(B

s
2 ) : 0 ≤ s ≤ 2

}
is a complex interpolation scale.

In particular,

(5.12) D(Bθ/2) = [H,V]θ, 0 ≤ θ ≤ 1.

We wish to further elaborate on this topic by shedding some light on the nature of
D(Bα) when α ∈ (1/2, 1). This requires some preparations. To get started, denote by
B̃ ∈ B(V,V∗) the operator induced by the form b(·, ·) (so that B is the part of B̃ in H),
and let Ĩ stand for the inclusion of V into V∗. It then follows from (5.1) that

(Ĩ + B̃) ∈ B(V,V∗) is an isomorphism.(5.13)

The idea is to find another suitable context in which the operator Ĩ+B̃ is an isomorphism,
and then interpolate between this and (5.13). However, in contrast to what goes on for
boundedness, invertibility is not, generally speaking, preserved under interpolation. There
are, nonetheless, certain specific settings in which this is true. To discuss such a case recall
that, if (X0, X1) are a couple of compatible Banach spaces, X0 ∩ X1 and X0 + X1 are
equipped, respectively, with the norms

‖x‖X0∩X1 := max {‖x‖X0 , ‖x‖X1} , and

‖z‖X0+X1 = inf {‖x0‖X0 + ‖x1‖X1 : z = x0 + x1, xi ∈ Xi, i = 0, 1} .
(5.14)

We have:

Lemma 5.1. Let (X0, X1) and (Y0, Y1) be two couples of compatible Banach spaces and
assume that T : X0 +X1 −→ Y0 + Y1 is a linear operator with the property that

T : Xi −→ Yi is an isomorphism, i = 0, 1.(5.15)

In addition, assume that there exist Banach spaces X ′, Y ′ such that the inclusions

X ′ ↪→ X0 ∩X1, Y ′ ↪→ Y0 ∩ Y1,(5.16)

are continuous with dense range, and that

T : X ′ −→ Y ′ is an isomorphism.(5.17)

Then the operator

T : [X0, X1]θ −→ [Y0, Y1]θ(5.18)

is an isomorphism for each 0 ≤ θ ≤ 1.
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Proof. Denote by Ri ∈ B(Yi, Xi), i = 0, 1, the inverses of T in (5.15). Since the operators
R0 and R1 coincide as mappings in B(Y ′, X ′), by density they also agree as mappings in
B(Y0 ∩ Y1, X0 ∩X1). It is therefore meaningful to define

R : Y0 + Y1 −→ X0 +X1, by

R(y0 + y1) := R0(y0) +R1(y1), yi ∈ Yi, i = 0, 1.
(5.19)

Then R is a linear operator which belongs to B(Y0, X0) ∩ B(Y1, X1). Thus, by the inter-
polation property, R maps [Y0, Y1]θ boundedly into [X0, X1]θ for every θ ∈ [0, 1]. In this
latter context, R provides an inverse for T : [X0, X1]θ −→ [Y0, Y1]θ, since RT = IX0∩X1

on X0 ∩X1, which is a dense subspace of [X0, X1]θ, and TR = IY0∩Y1 on Y0 ∩ Y1, which
is a dense subspace of [Y0, Y1]θ. This proves that the operator in (5.18) is indeed an
isomorphism for every θ ∈ [0, 1]. �

After this preamble, we are ready to present the following.

Proposition 5.2. With the above assumptions and notation,

(5.20) D(B
1+θ
2 ) = (Ĩ + B̃)−1

(
D(B

1−θ
2 )
)∗

for every 0 ≤ θ ≤ 1.

Proof. As already remarked above, the operator Ĩ + B̃ : V → V∗ is boundedly invertible.
We claim that

Ĩ + B̃ : D(B) −→ H(5.21)

is invertible as well, when D(B) is equipped with the graph norm u 7→ ‖u‖H + ‖Bu‖H.
Indeed, this operator is clearly well-defined, linear and bounded, since B̃ coincides with B
on D(B). Also, the fact that the operator in (5.13) is one-to-one readily entails that so is
(5.21). To see that the operator (5.21) is onto, pick an arbitrary w ∈ H ↪→ V∗. It follows
from (5.13) that there exists u ∈ V ↪→ H such that (Ĩ + B̃)u = w. In turn, this implies
that B̃u = w− u ∈ H and, hence, u ∈ D(B). This shows that the operator (5.21) is onto,
hence ultimately invertible.

Interpolating between (5.13) and (5.21) then proves (with the help of Lemma 5.1, (5.9)-
(5.10), and the duality theorem for the complex method) that the operator

(5.22) Ĩ + B̃ : D(B
1+θ
2 ) = [V, D(B)]θ → [V∗,H]θ =

(
[H,V]1−θ

)∗
=
(
D(B

1−θ
2 )
)∗

is an isomorphism, for every 0 ≤ θ ≤ 1. From this, (5.20) readily follows. �

6. The definition of the Neumann-Stokes operator

In this section we define the Stokes operator when equipped with Neumann bound-
ary conditions in Lipschitz domains in Rn. Subsequently, in Theorem 6.7, we study the
functional analytic properties of this operator. We begin by making the following:

Definition 6.1. Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ R is fixed.
Define the Stokes operator with Neumann boundary condition as the unbounded operator
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Bλ : D(Bλ) ⊂ H −→ H(6.1)

with domain

D(Bλ) :=
{
~u ∈ V : there exists π ∈ L2(Ω) so that ~f := −∆~u+∇π ∈ H

and such that ∂λν (~u, π)~f = 0 in L2
−1/2(∂Ω)n

}
,(6.2)

and acting according to

Bλ~u := −∆~u+∇π, ~u ∈ D(Bλ),(6.3)

assuming that the pair (~u, π) satisfies the requirements in the definition of D(Bλ).

As it stands, it is not entirely obvious that the above definition is indeed coherent and
our first order of business is to clarify this issue. We do so in a series of lemmas, starting
with:

Lemma 6.2. If the pair (~u, π) satisfies the requirements in the definition of D(Bλ), then
∆π = 0 in Ω.

Proof. Since the vector fields ~u and ~f := −∆~u − ∇π are both divergence-free, it follows
that ∆π = div (−∆~u−∇π) = div ~f = 0. �

Lemma 6.3. If ~u ∈ D(Bλ), then there exists a unique scalar function π ∈ L2(Ω) such
that ~f := −∆~u−∇π ∈ H and ∂λν (~u, π)~f = 0 in L2

−1/2(∂Ω)n.

Proof. Fix a vector field ~u ∈ D(Bλ) and assume that πj ∈ L2(Ω), j = 1, 2, are such that

~fj := −∆~u−∇πj ∈ H and ∂λν (~u, πj)~f = 0 in L2
−1/2(∂Ω)n, for j = 1, 2.(6.4)

Set π := π1 − π2 ∈ L2(Ω), and note that

∇π = ~f1 − ~f2 ∈ H ↪→ L2
1(Ω)n.(6.5)

As a consequence,

π ∈ L2
1(Ω).(6.6)

Next, we employ (3.20) and (6.4) in order to write

0 =
〈
∂λν (~u, π1)~f1 − ∂

λ
ν (~u, π2)~f2 ,

~ψ
〉

=
〈
~f1,Ex(~ψ)

〉
+ Aλ

(
∇~u,∇Ex(~ψ)

)
−
〈
π1, div Ex(~ψ)

〉
−
〈
~f2,Ex(~ψ)

〉
− Aλ

(
∇~u,∇Ex(~ψ)

)
+
〈
π2, div Ex(~ψ)

〉
=

〈
~f1 − ~f2,Ex(~ψ)

〉
−
〈
π,div Ex(~ψ)

〉
,(6.7)
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for every ~ψ ∈ L2
1/2(∂Ω)n. At this stage, we recall (6.5)-(6.6) in order to transform the last

expression in (6.7) into〈
∇π,Ex(~ψ)

〉
−
〈
π,div Ex(~ψ)

〉
=
〈

Trπ , ν · ~ψ
〉
.(6.8)

In concert with (6.7), this shows that〈
(Trπ) ν , ~ψ

〉
= 0 for every ~ψ ∈ L2

1/2(∂Ω)n,(6.9)

from which we may conclude that

Trπ = 0 in L2
1/2(∂Ω)n.(6.10)

This, (6.6) and Lemma 6.2 amount to saying that π ∈ L2
1(Ω) is harmonic and satisfies

Trπ = 0. Thus, π = 0 in Ω, by the uniqueness for the Dirichlet problem. Hence, π1 = π2

in Ω, as desired. �

Remark. In particular, Lemma 6.3 implies that there is no ambiguity in defining Bλ~u as
in (6.3).

Recall now the bilinear form (2.33), and consider

bλ(·, ·) : V × V −→ R, bλ(~u,~v) :=
∫

Ω
Aλ(∇~u,∇~v) dx.(6.11)

Our goal is to study this sesquilinear form. This requires some prerequisites which we now
dispense with. First, the following Korn type estimate has been proved in [23].

Proposition 6.4. Let Ω be a Lipschitz domain and assume that 1 < p <∞. Then there
exists a finite constant C > 0 which depends only on p and the Lipschitz character of Ω
such that

(6.12) ‖~u‖Lp1(Ω)n ≤ C
{
‖∇~u+∇~u>‖

Lp(Ω)n2 + C diam (Ω)−1‖~u‖Lp(Ω)n

}
,

uniformly for ~u ∈ Lp1(Ω)n.

We shall also need the the following algebraic result from [23].

Proposition 6.5. For every λ ∈ (−1, 1] there exists κλ > 0 such that for every n × n-
matrix ξ

(6.13) Aλ(ξ, ξ) ≥ κλ |ξ|2 for |λ| < 1 and A1(ξ, ξ) ≥ κ1 |ξ + ξ>|2.

The following well-known result (cf. [4]) is also going to be useful shortly.

Lemma 6.6. Let Ω be an open subset of Rn, and assume that ~v ∈ [D(Ω)′]n is a vector-
valued distribution which annihilates {~w ∈ C∞c (Ω)n : div ~w = 0 in Ω}. Then there exists
a scalar distribution q ∈ D(Ω)′ with the property that ~v = ∇q in Ω.

We are now ready to state and prove the main result of this section. Recall the spaces
V, H from (2.9), (2.8), along with the form bλ(·, ·) from (6.11).
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Theorem 6.7. Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ (−1, 1] is
fixed. Then the sesquilinear form bλ(·, ·) introduced in (6.11) is symmetric, bounded, non-
negative, and closed.

Furthermore, the Neumann-Stokes operator Bλ, originally introduced in (6.1)-(6.3), is
(in the terminology of § 4) the operator associated with bλ(·, ·). As a consequence,

Bλ is self-adjoint and nonnegative on H,(6.14)

D(|B|1/2) = D(B1/2) = V,(6.15)

D(B) is dense both in V and in H.(6.16)

Finally, Spec(Bλ), the spectrum of the operator (6.1)-(6.3) is a discreet subset of [0,∞).

Proof. Lemma 2.1 ensures that (4.1) holds, hence the formalism from § 4 applies. That
the form bλ(·, ·) in (6.11) is nonnegative, symmetric, sesquilinear and continuous is clear
from its definition. In addition, this form is coercive, hence closed. Indeed, when |λ| < 1
this follows directly from Proposition 6.5, whereas when λ = 1 this is a consequence of
the second inequality in (6.13) and Proposition 6.4.

We next wish to show the coincidence between the domain D(Bλ) of the Neumann-
Stokes operator in (6.2) and the space

{
~u ∈ V : there exists ~f ∈ H such that bλ(~w, ~u) = (~w, ~f)H for all ~w ∈ V

}
.(6.17)

In one direction, fix ~u ∈ V such that there exists ~f ∈ H for which

∫
Ω
Aλ(∇~w,∇~u) dx =

∫
Ω
〈~w, ~f〉 dx for every ~w ∈ V.(6.18)

Specializing (6.18) to the case when ~w ∈ C∞c (Ω)n is divergence-free yields, e.g., on account
of (2.34) used with π = 0, that

the distribution ~f + ∆~u vanishes on
{
~w ∈ C∞c (Ω)n : div ~w = 0 in Ω

}
.(6.19)

Then, by virtue of Lemma 6.6, there exists a scalar distribution π̃ in Ω such that

∇π̃ = ~f + ∆~u ∈ L2
−1(Ω)n.(6.20)

Going further, (6.20) and Corollary 3.3 imply that, in fact,

π̃ ∈ L2(Ω) and ~f = −∆~u+∇π̃ in Ω.(6.21)

At this point we make the claim that there exists a constant c ∈ R with the property
that

π := π̃ − c =⇒ ∂λν (~u, π)~f = 0 in L2
−1/2(∂Ω)n.(6.22)

To justify this, we first note that (3.23) (used with −~f in place of ~f) and (6.18) force
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〈
∂λν (~u, π̃)~f , Tr ~w

〉
= 0 for every ~w ∈ V,(6.23)

hence, further,

〈
∂λν (~u, π̃)~f , ~ϕ

〉
= 0 for every ~ϕ ∈ L2

1/2,ν(∂Ω),(6.24)

by Lemma 2.2. To continue, fix some vector field ~ϕo ∈ L2
1/2(∂Ω)n with the property that∫

∂Ω ν · ~ϕo dσ = 1, and define

c :=
〈
∂λν (~u, π̃)~f , ~ϕo

〉
.(6.25)

Now, given an arbitrary ~ϕ ∈ L2
1/2(∂Ω)n, set λ :=

∫
∂Ω ν · ~ϕ dσ and compute

〈
∂λν (~u, π̃)~f , ~ϕ

〉
=

〈
∂λν (~u, π̃)~f , ~ϕ− λ~ϕo

〉
+ λ

〈
∂λν (~u, π̃)~f , ~ϕo

〉
= 0 + 〈c ν , ~ϕ〉,(6.26)

by (6.24), (6.25) and the definition of λ. Since ~ϕ ∈ L2
1/2(∂Ω) is arbitrary, this proves that

∂λν (~u, π̃)~f = c ν in L2
−1/2(∂Ω)n.(6.27)

Thus,

∂λν (~u, π̃ − c)~f = ∂λν (~u, π̃)~f − ∂
λ
ν (~0, c)~0 = c ν − c ν = 0 in L2

−1/2(∂Ω)n,(6.28)

hence (6.22) holds. Note that (6.21) also ensures that π ∈ L2(Ω) and ~f = −∆~u+∇π in Ω.
Together, these conditions prove that the space in (6.17) is contained in D(Bλ) (defined
in (6.2)).

Conversely, the inclusion of D(Bλ) into the space in (6.17) is a direct consequence of the
definition of the domain of the Neumann-Stokes operator (in (6.2)) and the integration by
parts formula (3.23).

Once D(Bλ) has been identified with the space in (6.17), the fact that the Neumann-
Stokes operator Bλ, in (6.1)-(6.3) is, in the terminology of § 4, the operator associated
with the form bλ(·, ·) follows from (4.34). Finally, the claim made about Spec (Bλ) is a
consequence of the fact that Bλ is nonnegative and has a compart resolvent. �

7. The Stokes scale adapted to Neumann boundary conditions

Given a Lipschitz domain Ω ⊂ Rn and 1 < p <∞, s ∈ R, we set

(7.1) V s,p(Ω) :=
{
~u ∈ Lps(Ω)n : div ~u = 0 in Ω

}
.

The first main result of this section is to show that the above scale is stable under complex
interpolation.
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Theorem 7.1. For each Lipschitz domain Ω ⊂ Rn, the family

(7.2)
{
V s,p(Ω) : 1 < p <∞, s ∈ R

}
is a complex interpolation scale. In other words, if [·, ·]θ stands for the usual complex
interpolation bracket, then

(7.3)
[
V s0,p0(Ω) , V s1,p1(Ω)

]
θ

= V s,p(Ω)

whenever 1 < pi <∞, si ∈ R, i = 0, 1, θ ∈ [0, 1], 1
p := 1−θ

p0
+ θ

p1
and s := (1− θ)s0 + θs1.

Before turning to the proof of Theorem 7.1, we recall a version of an abstract interpolation
result from [18].

Lemma 7.2. Let Xi, Yi, i = 0, 1, be two pairs of Banach spaces such that X0 ∩ X1 is
dense in both X0 and X1, and similarly for Y0, Y1. Let D be a linear operator such that
D : Xi → Yi boundedly for i = 0, 1, and consider the following closed subspaces of Xi,
i = 0, 1:

(7.4) Ker (D;Xi) := {u ∈ Xi : Du = 0}, i = 0, 1.

Finally, suppose that there exists a continuous linear mapping G : Yi → Xi with the
property D ◦G = I, the identity on Yi for i = 0, 1. Then, for each 0 < θ < 1,

(7.5) [Ker (D;X0),Ker (D;X1)]θ = {u ∈ [X0, X1]θ : Du = 0}, θ ∈ (0, 1).

Proof of Theorem 7.1. Denote by Π the harmonic Newtonian potential, i.e., the operator
of convolution with the standard fundamental solution for the Laplacian in Rn. Recall the
universal extension operator EΩ from Theorem 3.1. Without loss of generality, we may
assume that EΩu is supported in a fixed compact neighborhood of Ω for every distribution
u in Ω. Assuming that this is the case, we set

ΠΩ := RΩ ◦Π ◦ EΩ,(7.6)

where RΩu := u|Ω is the operator of restriction to Ω. Given that Π is smoothing of order
two, it follows that

ΠΩ : Lps(Ω) −→ Lps+2(Ω), 1 < p <∞, s ∈ R,(7.7)

is a well-defined, linear and bounded operator.
Next, fix p0, p1, p, s0, s1, s, θ as in the statement of the theorem. We shall implement

Lemma 7.2 in which we take

(7.8) Xi := Lpisi (Ω)n and Yi := Lpisi−1(Ω), i = 0, 1,

as well as

(7.9) D := div and G := ∇ΠΩ.
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Then since

(7.10) D : Xi −→ Yi, G : Yi −→ Xi, i = 0, 1,

are well-defined, linear and bounded, and since D ◦G = I, the identity, the conclusion in
Theorem 7.1 follows from Lemma 7.2. �

Our next goal is to identify the duals of the spaces in the Stokes scale introduced in
(7.1). As a preamble, we prove the following.

Proposition 7.3. Let Ω be a Lipschitz domain in Rn with outward unit normal ν and
assume that 1 < p <∞, −1 + 1

p < s < 1
p . Define the mapping

(7.11) ν· : V s,p(Ω) −→ Bp,p

s− 1
p

(∂Ω)

by setting

(7.12) 〈ν · ~u, φ〉 := 〈~u,∇Φ〉

for each φ ∈
(
Bp,p

s− 1
p

(∂Ω)
)∗

= Bp′,p′

−s+ 1
p

(∂Ω), where Φ ∈ Lp
′

1−s(Ω) is such that Tr Φ = φ.

Then the above definition is meaningful and the operator (7.11) is bounded in the sense
that

(7.13) ‖ν · ~u‖Bp,p
s− 1

p
(∂Ω) ≤ C‖~u‖Lps(Ω)n ,

for some finite C = C(Ω, s, p) > 0. Finally, the range of the operator (7.11)-(7.12) is

(7.14)
{
f ∈ Bp,p

s− 1
p

(∂Ω) : 〈f, 1〉 = 0
}
.

Proof. This follows from Proposition 2.7 in [21] and Proposition 2.1 in [20]. �

Theorem 7.4. Let Ω ⊂ Rn be a Lipschitz domain and fix 1 < p < ∞. Next, for each
−1 + 1/p < s < 1/p, let

(7.15) Js,p : V s,p(Ω) ↪→ Lps(Ω)n

be the canonical inclusion, and consider its dual

(7.16) J∗s,p : Lp
′

−s(Ω)n −→
(
V s,p(Ω)

)∗
,

where 1/p + 1/p′ = 1. Then the mapping (7.16) is onto and its kernel is precisely
∇[Lp

′

1−s,z(Ω)]. In particular,

(7.17) J∗s,p :
Lp
′

−s(Ω)n

∇
[
Lp
′

1−s,z(Ω)
] −→ (

V s,p(Ω)
)∗

is an isomorphism.
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Proof. Since V s,p(Ω) is a closed subspace of Lps,z(Ω), Hahn-Banach’s theorem immediately
gives that the mapping (7.16) is onto. That (7.17) is an isomorphism will then follow
as soon as we show that Ker J∗s,p, the null-space of the application (7.16), coincides with

∇[Lp
′

1−s,z(Ω)]. In one direction, if ~u ∈ Lp
′

−s(Ω)n =
(
Lps(Ω)n

)∗
is such that J∗s,p(~u) = 0, then

〈~u,~v〉 = 0 for each ~v ∈ V s,p(Ω). Choosing ~v ∈ C∞c (Ω)n such that div~v = 0 in Ω shows,
on account of Lemma 6.6, that there exists a distribution w in Ω such that ∇w = ~u.
Proposition 3.2 then ensures that w ∈ Lp

′

1−s(Ω), so that ~u = ∇w ∈ ∇
[
Lp
′

1−s(Ω)
]
. There

remains to show that, after subtracting a suitable constant from w, this function can be
made to have trace zero and, hence, belong to Lp

′

1−s,z(Ω). To this end, note that for each
~v ∈ V s,p(Ω) we have

0 = 〈~u,~v〉 = 〈∇, ~v〉 = 〈Trw, ν · ~v〉.(7.18)

Then the last claim in Proposition 7.3 shows that Trw is a constant, as wanted.
Conversely, if ~u = ∇Φ ∈ Lp

′

−s(Ω,Rn) for some Φ ∈ Lp
′

1−s,z(Ω) then Proposition 7.3 allows
us to write

(7.19) 〈J∗s,p(~u), ~v〉 = 〈∇Φ, ~v〉 = 〈Tr Φ, ν · ~v〉 = 0,

for every ~v ∈ V s,p(Ω). Thus, J∗s,p(~u) = 0, finishing the proof of the theorem. �

Theorem 7.5. For each Lipschitz domain Ω ⊂ Rn there exists ε = ε(Ω) ∈ (0, 1] with the
following significance. Assume that 1 < p < ∞, −1 + 1/p < s < 1/p and that the pair
(s, 1/p) satisfies either of the following three conditions:

(I) : 0 < 1
p <

1−ε
2 and − 1 + 1

p < s < 3
p − 1 + ε;

(II) : 1−ε
2 ≤

1
p ≤

1+ε
2 and − 1 + 1

p < s < 1
p ;(7.20)

(III) : 1+ε
2 < 1

p < 1 and − 2 + 3
p − ε < s < 1

p .

Then

(7.21) Lps(Ω)n = V s,p(Ω)⊕∇
[
Lps+1,z(Ω)

]
,

where the direct sum is topological (in fact, orthogonal when s = 0 and p = 2). Further-
more, if

(7.22) P : Lps(Ω)n −→ V s,p(Ω)

denotes the projection onto the first summand in the decomposition (7.21), then its kernel
is ∇

[
Lps+1,z(Ω)

]
. In particular,

(7.23) P :
Lps(Ω)n

∇
[
Lps+1,z(Ω)

] −→ V s,p(Ω)

is an isomorphism. Also, the adjoint of the operator
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(7.24) Pp,s : Lps(Ω)n P−→ V s,p(Ω)
Js,p−→ Lps(Ω)n

is the operator Pp′,−s, and

(7.25)
(
V s,p(Ω)

)∗
= V −s,p

′
(Ω).

Proof. The decomposition (7.21) corresponding to the case when s = 0 has been estab-
lished in [8] via an approach which reduces matters to the well-posedness of the inhomo-
geneous Dirichlet problem for the Laplacian in the Lipschitz domain Ω. The more general
case considered here can be proved in an analogous fashion. With (7.21) in hand, the
claims about the projection (7.22) are straightforward.

Consider next the identification in (7.25). If ~u ∈ V −s,p′(Ω) define Λ~u ∈
(
V s,p(Ω)

)∗ by
setting

Λ~u(~v) := Lps(Ω)n

〈
~v , ~u

〉
Lp
′
−s(Ω)n

, ∀~v ∈ V s,p(Ω).(7.26)

Then the mapping

Φ : V −s,p
′
(Ω) −→

(
V s,p(Ω)

)∗
, Φ(~u) := Λ~u,(7.27)

is well-defined, linear and bounded. Our goal is to show that this is an isomorphism. To
prove that Φ is onto, fix Λ ∈

(
V s,p(Ω)

)∗. Recall the operator P from (7.22) and note that
Λ ◦ P ∈

(
Lps(Ω)

)∗ = Lp
′

s′ (Ω). That is, there exists ~w ∈ Lp
′

s′ (Ω) such that

(Λ ◦ P)~u = Lps(Ω)n

〈
~w , ~u

〉
Lp
′
−s(Ω)n

, ∀ ~u ∈ V s,p(Ω).(7.28)

Then ΛP~w := Φ(P~w) satisfies

ΛP~w(~v) = 〈~v,P~w〉 = 〈~w,P~v〉 = 〈~w,~v〉

= 〈~v, ~w〉 = (Λ ◦ P)~v = Λ(~v), ∀~v ∈ V s,p(Ω).(7.29)

Hence Λ = ΛP~w, proving that Φ is onto. To see that Φ is also one-to-one, we note that if
~u ∈ V −s,p′(Ω) is such that Λ~u = 0, then

〈~u,~v〉 = 0 ∀~v ∈ V s,p(Ω) =⇒ 〈~u,P~w〉 = 0 ∀ ~w ∈ Lps(Ω)

=⇒ 〈P~u, ~w〉 = 0 ∀ ~w ∈ Lps(Ω)

=⇒ 〈~u, ~w〉 = 0 ∀ ~w ∈ Lps(Ω)

=⇒ ~u = 0.(7.30)

This shows that Φ in (7.27) is an isomorphism, thus finishing the proof of (7.25). The
proof of the theorem is therefore completed. �
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8. The Poisson problem for the Stokes operator with Neumann conditions

For a given Lipschitz domain Ω in Rn, n ≥ 2, the range of indices for which the Poisson
problem in Ω for the Stokes operator equipped with Neumann boundary conditions is well-
posed on Besov and Triebel-Lizorkin spaces depends on the dimension n of the ambient
space and the Lipschitz character of Ω. The latter is manifested by a parameter ε ∈ (0, 1]
which can be thought of as measuring the degree of roughness of Ω (thus, the larger ε the
milder the Lipschitz nature of Ω, and the smaller ε, the more acute Lipschitz nature of Ω).
To best describe these regions, for each n ≥ 2 and ε > 0 we let Rn,ε denote the following
sets. For n = 2, R2,ε is the collection of all pairs of numbers s, p with the property that
either one of the following two conditions below is satisfied:

(I2) : 0 ≤ 1
p < s+ 1+ε

2 and 0 < s ≤ 1+ε
2 ,

(II2) : −1+ε
2 < 1

p − s <
1+ε

2 and 1+ε
2 < s < 1.

(8.1)

Corresponding to n = 3, R3,ε is the collection of all pairs s, p with the property that either
of the following two conditions holds:

(I3) : 0 ≤ 1
p <

s
2 + 1+ε

2 and 0 < s < ε,

(II3) : − ε
2 <

1
p −

s
2 <

1+ε
2 and ε ≤ s < 1.

(8.2)

Finally, corresponding to n ≥ 4, we let Rn,ε denote the collection of all pairs s, p with the
property that

(In) : n−3
2(n−1) − ε <

1
p −

s
n−1 <

1
2 + ε and 0 < s < 1, 1 < p <∞.(8.3)

The following well-posedness result has been recently established in [23].

Theorem 8.1. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, with connected com-
plement, and fix n−1

n < p ≤ ∞, 0 < q ≤ ∞, and (n − 1)
(

1
p − 1

)
+
< s < 1. Also, assume

that λ ∈ (−1, 1] and µ ∈ C \ Spec (Bλ). Then there exists ε = ε(Ω) ∈ (0, 1] such that the
Poisson problem for the Stokes system with Neumann boundary condition

(8.4)
µ~u−∆~u+∇π = ~f

∣∣∣
Ω
, ~f ∈ Bp,q

s+ 1
p
−2,0

(Ω), div ~u = 0 in Ω,

~u ∈ Bp,q

s+ 1
p

(Ω), π ∈ Bp,q

s+ 1
p
−1

(Ω), ∂λν (~u, π)~f−µ~u = 0 in Bp,q
s−1(∂Ω),

has a unique solution if the pair s, p belongs to the region Rn,ε, described in (8.1)-(8.3).
In addition, the solution satisfies the estimate

(8.5) ‖~u‖Bp,q
s+ 1

p
(Ω) + ‖π‖Bp,q

s+ 1
p−1

(Ω) ≤ C‖~f‖Bp,q
s+ 1

p−2,0
(Ω),

for some finite constant C = C(Ω, n, p, s, λ, µ) > 0.
Moreover, an analogous well-posedness result holds for the problem



THE STOKES OPERATOR WITH NEUMANN BOUNDARY CONDITIONS IN LIPSCHITZ DOMAINS 31

(8.6)
µ~u−∆~u+∇π = ~f

∣∣∣
Ω
, ~f ∈ F p,q

s+ 1
p
−2,0

(Ω), div ~u = 0 in Ω,

~u ∈ F p,q
s+ 1

p

(Ω), π ∈ F p,q
s+ 1

p
−1

(Ω), ∂λν (~u, π)~f−µ~u = 0 in Bp,p
s−1(∂Ω),

assuming that p, q <∞.

Strictly speaking, the above theorem has been proved in [23] when µ = 0 (in which case the
data must satisfy certain necessary compatibility conditions, and uniqueness is valid up a
finite dimensional space). The method of proof in [23] is constructive as it relies on integral
representation formulas (involving hydrostatic potential operators). As such, this approach
can be easily adapted to the slightly more general case above, since the difference between
the fundamental solutions for the original Stokes system

{
−∆ ~u+∇π = 0 , div ~u = 0

}
and

the lower-order perturbation
{

(µ − ∆) ~u + ∇π = 0 , div ~u = 0
}

is only weakly singular.
We leave the straightforward details to the interested reader.

9. Domains of fractional powers of the Neumann Stokes operator: I

Here we study the global regularity, measured on the Sobolev scale, of vector fields in
the domains of fractional powers of the Neumann Stokes operator. Our first result in this
regard reads as follows:

Theorem 9.1. Let Ω be a Lipschitz domain in Rn and fix λ ∈ (−1, 1]. Then the domain of
the fractional power of the Neumann Stokes operator Bλ introduced in (6.2)-(6.3) satisfies

(9.1) D(B
s
2
λ ) =

{
~u ∈ L2

s(Ω)n : div ~u = 0
}

if 0 ≤ s ≤ 1,

and

(9.2) ~u ∈ D(B
s
2
λ )⇐⇒

 ~u ∈ V and there exists π ∈ L2(Ω) such that

~f := (1−∆) ~u+∇π ∈ L2
s−2(Ω)n and ∂λν (~u, π)~f−~u = 0,

granted that s ∈ (3/2, 2].

Proof. Consider the families of spaces
{
V s,2(Ω) : s ∈ R

}
and

{
D(B

s
2 ) : 0 ≤ s ≤ 2

}
.

From Theorem 7.1 and (5.11) we know that both are complex interpolation scales, and

(9.3) D(B0
λ) = H = V 0,2(Ω), D(B

1
2
λ ) = V = V 1,2(Ω).

Thus, by complex interpolation,

(9.4) D(B
s
2
λ ) = V s,2(Ω), 0 ≤ s ≤ 1,

which gives the description of D(B
s
2
λ ) in (9.1).

To study larger values of s, recall the form bλ(·, ·) and the operator B̃λ induced by it.
From (5.20)-(9.4) we obtain
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(9.5) D(B
s
2
λ ) = (Ĩ + B̃λ)−1

(
V 2−s,2(Ω)

)∗
, 1 ≤ s ≤ 2.

Thus, by (7.25),

(9.6) ~u ∈ D(B
s
2
λ )⇐⇒ ~u ∈ V and (Ĩ + B̃λ)~u ∈ V s−2,2(Ω), if 3

2 < s ≤ 2.

Consequently, if s ∈ (3/2, 2], then by taking into account the very definition of B̃λ we
arrive at the conclusion that

(9.7) ~u ∈ D(B
s
2
λ )⇐⇒

 ~u ∈ V and ∃ ~f ∈ L2
s−2(Ω)n such that

〈~f,~v〉 =
∫

Ω ~u · ~v dx+
∫

ΩAλ(∇~u,∇~v) dx, ∀~v ∈ V.

Much as before, by relying on Lemma 6.6, Corollary 3.3 and Proposition 3.5, it follows
from (9.7) that (9.2) holds. �

It is possible to further extend the scope of the above analysis. In order to facilitate the
subsequent discussion, for each ε ∈ (0, 1], s ∈ [3

2 , 2] and n ≥ 2, define the two dimensional
region

(9.8) Rn,s,ε :=


(θ, 1

p) : 0 < 1
p < θ < 1 + 1

p < 2, θ ≤ s, and

1
2 + ε > 1

p −
θ
n ≥

1
2 −

s
n if 3

2 ≤ s <
n
n−1 + εn,

1
2 + ε > 1

p −
θ
n > −

ε
n if n

n−1 + εn < s ≤ 2.

The figures below depict the region Rn,s,ε in the case when 3
2 ≤ s <

n
n−1 + εn,

and when n
n−1 + εn < s ≤ 2, respectively:

Theorem 9.2. For every Lipschitz domain Ω ⊂ Rn, n ≥ 2, there exists ε = ε(∂Ω) > 0
with the property that for every s ∈ (3/2, 2] and λ ∈ (−1, 1] the following implication holds:

(9.9) (θ, 1/p) ∈ Rn,s,ε =⇒ D(Bs/2
λ ) ⊂ Lpθ(Ω)n.

Proof. The strategy is to combine the characterization (9.2) with the well-posedness re-
sult for the Poisson problem for the Stokes system equipped with Neumann boundary
conditions. In concert, these two results show that D(Bα/2

λ ) ⊂ Lpθ(Ω)n provided

(9.10)
∃ s, p belonging to the region Rn,ε such that

θ = s+ 1/p and L2
α−2(Ω) ↪→ Lpθ−2(Ω).

Now, elementary algebra shows that, given α ∈ (3/2, 2], the condition (9.10) holds if and
only if (θ, 1/p) ∈ Rn,α,ε. Clearly, this proves (9.9), after re-adjusting notation. �
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Corollary 9.3. For a Lipschitz domain Ω in Rn one has

D(Bα
λ ) ⊂

⋃
p> 2n

n−1

Lp1(Ω)n if α > 3
4 .(9.11)

Also, when n = 3,

D(Bα
λ ) ⊂ C2α−3/2(Ω̄)3 if 3

4 < α < 3
4 + ε,(9.12)

and when n = 2,

D(Bα
λ ) ⊂ C2α−1(Ω̄)2 if 3

4 < α < 3
4 + ε,(9.13)

for some small ε = ε(Ω) > 0.

Proof. These are all immediate consequences of Theorem 9.2 and classical embeddings. �

10. Domains of fractional powers of the Neumann Stokes operator: II

The aim of this section is to augment the results in Theorem 9.1 by including a de-
scription of D(Bs/2

λ ) in the case when s ∈ (1, 3/2]. See Theorem 10.4 below. We begin
by revisiting the Neumann-Leray projection (7.22), with the goal of further extending the
range of action of this operator.

Lemma 10.1. Assume that Ω is a Lipschitz domain in Rn and that s ∈ R, p, p′ ∈ (1,∞),
1/p+ 1/p′ = 1. Then the operator

P̂s,p : Lp
′

−s,0(Ω)n =
(
Lps(Ω)n

)∗ −→ (
V s,p(Ω)

)∗(10.1)

defined by the requirement that

V s,p(Ω)

〈
~v, P̂s,p~u

〉
(V s,p(Ω))∗

= Lps(Ω)n
〈
~v, ~u
〉

(Lps(Ω)n)∗
∀~v ∈ V s,p(Ω),(10.2)

is well-defined, linear, bounded and onto. Furthermore, any two such operators act co-
herently, i.e., P̂s1,p1 = P̂s2,p2 on L

p′1
−s1,0(Ω)n ∩ Lp

′
2
−s2,0(Ω)n for any numbers s1, s2 ∈ R and

p1, p2 ∈ (1,∞). Next, if corresponding to s = 1 and p = 2 one considers

P̂1,2 : L2
−1,0(Ω)n =

(
L2

1(Ω)n
)∗ −→ V∗,

V
〈
~v, P̂1,2~u

〉
V∗ = L2

1(Ω)n
〈
~v, ~u
〉

(L2
1(Ω)n)∗

∀~v ∈ V,
(10.3)

then the diagram

(10.4)
L2
−1,0(Ω)n

bP1,2

−−−−→ V∗

↑ ↑

L2(Ω)n
P

−−−−−−→ H
in which the vertical arrows are natural inclusions, is commutative. Consequently, the
Neumann-Leray projection (7.22) extends as in (10.3).
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Proof. That (10.1)-(10.2) is well-defined and bounded is clear from the continuity of the
inclusion V s,p(Ω) ↪→ Lps(Ω)n. Using the fact that V s,p(Ω) is a closed subspace of Lps(Ω)n,
Hahn-Banach theorem, and (3.6), it is straightforward to show that the operator (10.1) is
onto. It is also clear from (10.2) that this family of operators act in a mutually compatible
fashion.

To show that the diagram (10.4) is commutative, pick ~u ∈ L2(Ω)n and use (7.21) (with
s = 0 and p = 2) in order to decompose it as P~u+∇π for some π ∈ L2

1,z(Ω). Then, since

(∇π,~v)L2(Ω)n = 0 ∀~v ∈ V,(10.5)

for every ~v ∈ V we have

V
〈
~v, P̂1,2~u

〉
V∗ = L2

1(Ω)n
〈
~v, ~u
〉

(L2
1(Ω)n)∗

=
(
~v, ~u
)
L2(Ω)n

=
〈
~v,P~u

〉
L2(Ω)n

+
(
~v,∇π

)
L2(Ω)n

= V
〈
~v,P~u

〉
V∗ .(10.6)

This shows that P̂1,2~u = P~u in V∗, as desired. �

Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ (−1, 1] has been fixed. Recall
the operator B̃λ induced by the sesquilinear form bλ(·, ·), i.e.,

B̃λ : V −→ V∗, B̃λ~u := bλ(·, ~u) ∈ V∗, ~u ∈ V.(10.7)

Next, fix ~u ∈ V , so that B̃λ~u : V → C is a linear, bounded functional. Since V is
a closed subspace of L2

1(Ω)n, the Hahn-Banach theorem ensures the existence of some
linear, bounded functional ~f : L2

1(Ω)n → C with the property that ~f |V = (Ĩ+ B̃λ)~u. Thus,
~f ∈

(
L2

1(Ω)n
)∗ = L2

1,0(Ω)n satisfies

L2
1(Ω)n

〈
~v, ~f

〉
(L2

1(Ω)n)∗
= V

〈
~v, (Ĩ + B̃λ)~u

〉
V∗

=
∫

Ω
~u · ~v dx+

∫
Ω
Aλ(∇~u,∇~v) dx, ~v ∈ V ↪→ L2

1(Ω)n.(10.8)

Specializing this to the case when ~v belongs to {~v ∈ C∞c (Ω)n : div~v = 0 in Ω} shows that
the distribution ~f |Ω − (1 −∆) ~u ∈ L2

−1(Ω)n annihilates this space. Thus, by Lemma 6.6,
there exists a distribution π in Ω such that

∇π = ~f
∣∣∣
Ω
−(1−∆ )~u ∈ L2

−1(Ω)n.(10.9)

In particular, π ∈ L2(Ω) by Corollary 3.3. Returning with this information back in (10.8)
and invoking (3.23) then shows that, after an eventual re-normalization of π (done by
subtracting a suitable constant, similar in spirit to (6.22)), matters can be arranged so
that

∂λν (~u, π)~f−~u = 0 in L2
−1/2(∂Ω)n.(10.10)

The stage is now set for proving the following result.
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Proposition 10.2. Suppose that Ω ⊂ Rn is a Lipschitz domain and assume that λ ∈
(−1, 1]. Then for every ~u ∈ V there exist

π ∈ L2(Ω) and ~f ∈ L2
−1,0(Ω)n(10.11)

such that

(1−∆ )~u+∇π = ~f
∣∣∣
Ω

in L2
−1(Ω)n,(10.12)

∂λν (~u, π)~f−~u = 0 in L2
−1/2(∂Ω)n,(10.13)

and (Ĩ + B̃λ)~u = P̂1,2
~f in V∗.(10.14)

Furthermore, if ~g ∈ L2
−1,0(Ω)n is such that P̂1,2 ~g = P̂1,2

~f , then there exists q ∈ L2(Ω)
with the property that

(1−∆ )~u+∇(π − q) = ~g
∣∣∣
Ω

in L2
−1(Ω)n,(10.15)

∂λν (~u, π − q)~g−~u = 0 in L2
−1/2(∂Ω)n.(10.16)

Proof. The existence of π, ~f as in (10.11) and for which (10.12)-(10.13) are satisfied is clear
from the discussion preceding the statement of the proposition. Hence, there remains to
prove (10.14). This, however, is a direct consequence of Lemma 10.1 and the first equality
in (10.8).

There remains to take care of the claim in the second part of the statement. To this
end, we first note that P̂1,2(~f − ~g) = 0 entails

L2
1(Ω)n

〈
~v, ~f − ~g

〉
(L2

1(Ω)n)∗
= 0, ∀~v ∈ V.(10.17)

Thus, via a familiar (by now) argument based on Lemma 6.6 and Corollary 3.3, we see
that there exists some scalar function q̂ ∈ L2(Ω) with the property that (~f − ~g)|Ω = ∇q̂
in L2

−1(Ω). In turn, this and (10.12) yield

(1−∆ )~u+∇(π − q̂) = ~g
∣∣∣
Ω

in L2
−1(Ω)n.(10.18)

Going further, formula (3.23) gives that for every ~w ∈ V

〈
Tr ~w , ∂λν (~u, π − q̂)~g−~u

〉
=

∫
Ω
~w · ~u dx+ Aλ

(
∇~w,∇~u

)
−L2

1(Ω)n
〈
~w,~g
〉

(L2
1(Ω)n)∗

.(10.19)

On the other hand, for every ~w ∈ V we have
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L2
1(Ω)n

〈
~w,~g
〉

(L2
1(Ω)n)∗

= V〈~w, P̂1,2 ~g
〉
V∗ = V〈~w, P̂1,2

~f
〉
V∗

= L2
1(Ω)n

〈
~w, ~f

〉
(L2

1(Ω)n)∗

=
∫

Ω
~w · ~u dx+ Aλ

(
∇~w,∇~u

)
,(10.20)

by hypotheses, (10.3), (3.23) and (10.13). Together, this and (10.19) then prove that

〈
∂λν (~u, π − q̂)~g−~u , Tr ~w

〉
= 0, ∀ ~w ∈ V.(10.21)

With this in hand, and by proceeding as in (6.23)-(6.28), we may then conclude that there
exists a constant c ∈ R with the property that if q := q̂ − c then (10.15)-(10.16) hold. �

Once again, suppose that Ω ⊂ Rn is a Lipschitz domain and that λ ∈ (−1, 1]. Also, fix
p ∈ (1,∞) and assume that 1/p < s < 1 + 1/p, 1 < p′ < ∞, 1/p + 1/p′ = 1. Then the
operator B̃λ from (10.7) extends to a bounded mapping

B̃λ : V s,p(Ω) −→
(
V 2−s,p′(Ω)

)∗
,

B̃λ~u := Aλ(·, ~u) ∈
(
V 2−s,p′(Ω)

)∗
, ~u ∈ V s,p(Ω).

(10.22)

A similar line of reasoning as in the proof of Proposition 10.2 (the only significant difference
is that Proposition 3.2 is used in place of Corollary 3.3) then yields the following.

Proposition 10.3. Retain the above notation and conventions. Also, assume that µ ∈ R.
Then for every ~u ∈ V s,p(Ω) there exist

π ∈ Lps−1(Ω) and ~f ∈ LPs+1/p−2,0(Ω)n(10.23)

such that

(µ−∆ )~u+∇π = ~f
∣∣∣
Ω

in Lps+1/p−2(Ω)n,(10.24)

∂λν (~u, π)~f−µ~u = 0 in Bp,p
s−1(∂Ω)n,(10.25)

and (µĨ + B̃λ)~u = P̂s,p ~f in
(
V 2−s,p′(Ω)

)∗
.(10.26)

The stage has now been set for us to prove the following.

Theorem 10.4. Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ (−1, 1]. Then
the domain of the fractional power of the Neumann-Stokes operator Bλ satisfies

(10.27) D(B
s
2
λ ) =

{
~u ∈ L2

s(Ω)n : div ~u = 0 in Ω
}

if s ∈ (1, 3
2).

Furthermore, corresponding to s = 3/2, one has that ~u ∈ D(B
3
4
λ ) if and only if
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~u ∈ V and ∃π ∈ L2(Ω), ∃ ~f ∈ L2

−1/2,0(Ω)n ↪→ L2
−1,0(Ω)n,

such that (1−∆) ~u−∇π = ~f
∣∣∣
Ω

in L2
−1/2(Ω)n ↪→ L2

−1(Ω)n,

and for which ∂λν (~u, π)~f−~u = 0 in L2
−1/2(∂Ω)n.

(10.28)

Proof. Assume that s ∈ [1, 2] and recall (9.5). Much as with (9.6), we have

(10.29) ~u ∈ D(B
s
2
λ )⇐⇒ ~u ∈ V and (Ĩ + B̃λ)~u ∈

(
V 2−s,2(Ω)

)∗
↪→ V∗.

Now, given ~u ∈ D(B
s
2
λ ), Proposition 10.2 ensures that there exist ~f , π as in (10.11)

such that (10.12)-(10.14) are satisfied. On the other hand, from Lemma 10.1 we know
that the operator (10.1) is onto. This implies that there exists ~g ∈ L2

s−2,0(Ω)n such
that P̂1,2 ~g = (Ĩ + B̃λ)~u in V∗. Then, according to the second part in the statement of
Proposition 10.2, there exists q ∈ L2(Ω) such that (10.15)-(10.16) hold. As a consequence,
if π̃ := π − q, then for each s ∈ [1, 2],

(10.30)

~u ∈ D(B
s
2
λ )⇐⇒


~u ∈ V and ∃ π̃ ∈ L2(Ω), ∃~g ∈ L2

s−2,0(Ω)n ↪→ L2
−1,0(Ω)n,

such that (1−∆) ~u−∇π̃ = ~g
∣∣∣
Ω

in L2
s−2(Ω)n ↪→ L2

−1(Ω)n,

and for which ∂λν (~u, π̃)~g−~u = 0 in L2
−1/2(∂Ω)n.

After adjusting notation, this equivalence with s = 3/2 proves (10.28).
Assume next that s ∈ (1, 3

2). With ~u, π̃ and ~g as in the right-hand side of (10.30), let
(~w, ρ) solve

(10.31)



~u ∈ L2
s(Ω)n, ρ ∈ L2

s−1(Ω),

(1−∆) ~w −∇ρ = ~g
∣∣∣
Ω
,

div ~w = 0 in Ω,

∂λν (~w, ρ)~g−~w = 0 in L2
s−3/2(∂Ω)n.

That this is possible is ensured by Theorem 8.1. Then the difference (~v, η) := (~u, π̃)−(~w, ρ)
solves the homogeneous system

(10.32)



~v ∈ L2
s(Ω)n, η ∈ L2

s−1(Ω),

(1−∆)~v −∇η = 0 in Ω,

div~v = 0 in Ω,

∂λν (~v, η)−~v = 0 in L2
−1/2(∂Ω)n.

This then forces ∂λν (~v, η)−~v = 0 in L2
s−3/2(∂Ω)n and, hence, ~v = 0, η = 0 in Ω by the

uniqueness part in Theorem 8.1. Thus, ultimately, ~u = ~w ∈ L2
s(Ω)n and π̃ = ρ ∈ L2

s−1(Ω).
This proves the left-to-right inclusion in (10.27). The opposite implication in (10.27)

then follows from (10.30) and Proposition 10.3 (considered with p = 2 and µ = 1). �
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Having established Theorem 10.4, the same argument as in the proof of Theorem 9.2
yields the following:

Corollary 10.5. The end-point case s = 3/2 in (9.9) holds as well. As a corollary, if
n = 3 then

D(B
3
4
λ ) ⊂ L3

1(Ω)3.(10.33)
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