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Abstract

We establish the well-posedness of the inhomogeneous Dirichlet problem for ∆2 in
arbitrary Lipschitz domains in R3, with data from Besov-Triebel-Lizorkin spaces, for
the optimal range of indices. The main novel contribution is to allow for certain non-
locally convex spaces to be considered, and to establish integral representations for the
solution.
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1 Introduction

Denote by Bp,q
s and F p,q

s the Besov and Triebel-Lizorkin spaces – considered here either in a
domain Ω, or on its boundary – and let Tr stand for the boundary trace operator. The main
result of this paper reads as follows.

Theorem 1.1. Assume that Ω ⊂ R3 is a bounded Lipschitz domain (of arbitrary topology)
with unit normal ν = (νj)j. Then there exists ε = ε(Ω) > 0 with the following property.
Suppose that 0 < q ≤ ∞ and that s, p are such that either of the following two conditions

(I) : 0 ≤ 1
p
< s

2
+ 1+ε

2
and 0 < s < ε,

(II) : − ε
2
< 1

p
− s

2
< 1+ε

2
and ε ≤ s < 1,

(1.1)

holds. Then the problem


∆2u = f ∈ Bp,q

s+ 1
p
−3

(Ω),

Tru = f0 ∈ Bp,q
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,q
s (∂Ω), 1 ≤ j ≤ 3,

(1.2)

where the boundary data satisfy the (necessary) compatibility conditions

(νj∂k − νk∂j)f0 = νjfk − νkfj, ∀ j, k, (1.3)

has a unique solution u ∈ Bp,q

s+ 1
p

+1
(Ω). This satisfies

‖u‖Bp,q
s+ 1

p+1
(Ω) ≤ C

(
‖f‖Bp,q

s+ 1
p−3

(Ω) +
3∑
j=0

‖fj‖Bp,qs (∂Ω)

)
, (1.4)

for some finite constant C = C(Ω, s, p) > 0.
Furthermore, similar results are valid for the version of the above boundary problem

phrased on Triebel-Lizorkin spaces, that is, for


∆2u = f ∈ F p,q

s+ 1
p
−3

(Ω),

Tru = f0 ∈ Bp,p
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,p
s (∂Ω), 1 ≤ j ≤ 3,

(1.5)

where u ∈ F p,q

s+ 1
p

+1
(Ω) and the boundary data is assumed to satisfy the compatibility conditions

(1.3) (and p, q <∞).
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It is easy to see that f0 and (fj)j are necessarily related if (1.2) has a solution, for in that
case ∇tanf0 = ∇u − (∂νu)ν = (fj − νjνkfk)j. The reason we prefer to state this as in (1.3)
has to do with the fact that, as opposed to the tangential gradient ∇tanf0, the tangential
derivative operators ∂τjk := νj∂k − νk∂j are well-defined when acting from Bp,q

s (∂Ω) into

Bp,q
s−1(∂Ω) (if 0 < p, q ≤ ∞, (n− 1)

(
1
p
− 1
)

+
< s < 1) even if Ω is merely Lipschitz.

Theorem 1.1 refines the well-posedness results for Lipschitz domains in R3 obtained by
V. Adolfsson and J. Pipher in [1] where the authors treat the case of (1.5) (with homogeneous
boundary conditions) in the situation when, in addition to having either of the two conditions
in (1.1) satisfied, one also asks that 1 < p <∞ and q = 2. In addition, we are able to obtain
integral representations for the solutions of (1.2) and (1.5). Somewhat more specifically, if
1 < q < ∞ and (s, 1/p) ∈ (0, 1) × (0, 1) are such that one of the conditions in (1.1) is
satisfied, then the solution u of the problem (1.2) with f = 0 can be written in the form

u(X) =

∫
∂Ω

|X − Y |g0(Y ) dσ(Y ) +
3∑
j=1

∫
∂Ω

xj − yj
|X − Y |

gj(Y ) dσ(Y ), X ∈ Ω, (1.6)

for some functions gj ∈ Bp,q
s−1(∂Ω), 0 ≤ j ≤ 3. A similar representation is valid for the

solution of (1.5). See Theorem 5.10 for a more precise result.
The work of V. Adolfsson and J. Pipher in [1] also deals with the case of the problem

(1.5) (with homogeneous boundary conditions) considered in bounded C1 domains in Rn,
n ≥ 3, in which setting the authors prove its well-posedness for q = 2 and all 1 < p < ∞,
0 < s < 1. This latter scenario is, nonetheless, covered by the following result proven by
I. Mitrea and M. Mitrea in [36], by further building on the work of V. Maz’ya, M. Mitrea and
T. Shaposhnikova in [31]:

Theorem 1.2. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, whose outward unit
normal vector ν belongs to VMO(∂Ω), the Sarason space of functions of vanishing mean
oscillations on ∂Ω. Then the problem



∆2u = f ∈ F p,q

s+ 1
p
−3

(Ω) in Ω,

Tru = f0 ∈ Bp,p
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,p
s (∂Ω), 1 ≤ j ≤ n,

u ∈ F p,q

1+s+ 1
p

(Ω),

(1.7)

with f0, f1, ..., fn satisfying compatibility conditions (1.3), is well-posed whenever

0 < s < 1, 1 < p <∞, 0 < q ≤ ∞. (1.8)

The result in [36] is actually more general, in that ∆2 can be replaced by an arbitrary
elliptic system of homogeneous, constant coefficient differential operators, and the domain in
question could even be Lipschitz. Then whether a given triplet of exponents (p, q, s) leads to
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well-posed problem depends on the size of dist (ν, V MO(∂Ω)), where the distance is measured
in BMO(∂Ω). Here BMO(∂Ω) is the John-Nirenberg space of functions bounded mean
oscillations, and VMO(∂Ω) is the Sarason space of functions of vanishing mean oscillations.
Thus, in general, C0(∂Ω) ⊂ VMO(∂Ω) ⊂ BMO(∂Ω), and ν ∈ L∞(∂Ω) ⊂ BMO(∂Ω). In
particular, ∂Ω ∈ C1 entails dist (ν, V MO(∂Ω)) = 0.

The consideration of the full scales of Triebel-Lizorkin spaces F p,q
α (Ω) and Besov spaces

Bp,q
α (Ω) is both natural and utilitarian. Indeed, as is well-known, these scales encompass a

number of more specialized function spaces which appear frequently in practical applications.
Below, we wish to elaborate more on this aspect, in a fashion which emphasizes the smoothing
properties of the Green operator G for the inhomogeneous Dirichlet problem for the bi-
Laplacian. That is, formally, if u solves

∆2u = f in Ω, u = ∂νu = 0 on ∂Ω, (1.9)

then

Gf := u. (1.10)

These considerations can be made precise using Lax-Milgram’s lemma, ultimately yielding
that

G : W−2,2(Ω) −→
◦

W 2,2(Ω) boundedly, (1.11)

where
◦

W 2,2(Ω) is the closure of C∞0 (Ω) in the norm ‖∆u‖L2(Ω) ≈
∑
|α|≤2 ‖∂αu‖L2(Ω), and

W−2,2(Ω) := {
∑
|α|≤2 ∂

αuα : uα ∈ L2(Ω)} equipped with the natural infimum norm. Hence,

the issue at stake is replacing the L2-based Sobolev spaces by more general Besov and Triebel-
Lizorkin spaces. Set Bp,q

α,z(Ω) := {f |Ω : f ∈ Bp,q
α (Rn), supp f ⊆ Ω̄}, with a similar definition

for F p,q
α,z(Ω). Based on Theorem 1.1 and trace results, we can then show the following.

Corollary 1.3. For every bounded, Lipschitz domain Ω in R3 there exists some small number
ε = ε(Ω) > 0 such the operators

G : Bp,q
α−1(Ω) −→ Bp,q

α+3,z(Ω), (1.12)

G : F p,q
α−1(Ω) −→ F p,q

α+3,z(Ω), (1.13)

are isomorphisms whenever 0 < q ≤ ∞ for the Besov scale, and min {p, 1} ≤ q < ∞
for the Triebel-Lizorkin scale, and the point with coordinates (α, 1/p) belongs to the (open)
pentagonal region depicted in Figure 1 below.
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Figure 1

Also,

∇4G : Bp,q
α−1(Ω) −→ Bp,q

α−1(Ω), (1.14)

∇4G : F p,q
α−1(Ω) −→ F p,q

α−1(Ω), (1.15)

are bounded operators whenever 0 < q ≤ ∞ and the point with coordinates (α, 1/p) belongs
to the (open) pentagonal region from Figure 1.

A remarkable special case corresponds to the Triebel-Lizorkin scale with q = 2 and α = 0,
in which case one obtains the following.

Corollary 1.4. Assume that Ω ⊂ R3 is a bounded Lipschitz. Then there exists ε = ε(Ω) > 0
such that

∇4G : F p,2
−1 (Ω) −→ F p,2

−1 (Ω) (1.16)

is a bounded operator provided that 1− ε < p < 1.

Recall that if n
n+1

< p ≤ 1 then F p,2
0 (Ω) becomes hp(Ω) := {f |Ω : f ∈ hp(Rn)}, where

hp(Rn) is the local Hardy space in Rn. Hence, F p,2
−1 (Ω) can be thought of as the space of (at

most) first order derivatives of distributions from hp(Ω). For the Laplace operator, a similar
result (valid in all space dimensions) has been established by S. Mayboroda and M. Mitrea
in [30]. This answered in the affirmative a conjecture made by D.-C. Chang, S. Krantz and
E. Stein (cf. [5], [6]) regarding the regularity of the harmonic Green potentials on Hardy
spaces in Lipschitz domains. The corresponding analogue of this result for the Stokes system
for arbitrary Lipschitz domains in dimension 3 has been recently proved by M. Mitrea and
M. Wright in [39].

Regarding the off-diagonal Besov scale, here we wish to single out the following.
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Corollary 1.5. For every bounded Lipschitz domain Ω in R3, the operator

G : Bp,1
3
p
−3

(Ω) −→ C1(Ω), p ∈ (0,∞), (1.17)

is well-defined, and

‖∇Gf‖L∞(Ω) ≤ C(Ω, p) ‖f‖Bp,13
p−3

(Ω), 0 < p <∞. (1.18)

This can be regarded as the inhomogeneous analogue of the Maximum Principle established
for the bi-Laplacian in Lipschitz domains by J. Pipher and G. Verchota in [44] (cf. also [45]).
This (essentially) states that for any bounded Lipschitz domain Ω ⊂ R3 there holds

‖∇u‖L∞(Ω) ≤ C(Ω)‖∇u‖L∞(∂Ω), (1.19)

uniformly for u biharmonic in Ω, and in fact, (1.18) can also be derived from (1.19). Other
related L∞-estimates are as follows. When specialized to the case of the bi-Laplacian, The-
orem 3.3 on p. 329 of J. Nečas’ book [41] yields that if Ω ⊂ R3 satisfies a uniform exterior
ball condition then

∇G : F 2,2
−1 (Ω) −→ L∞(Ω). (1.20)

See also J. Seo’s paper [50] for some related estimates. More recently, S. Mayboroda and
V. Maz’ya have proved in [28] that if Ω ⊂ R3 is bounded and open then

∇G : L
3
2
,1

−1 (Ω) −→ L∞(Ω), (1.21)

where Lp,q−1(Ω) consists of first order derivatives of functions from the Lorentz space Lp,q(Ω).

Note that F 2,2
−1 (Ω) ↪→ L

3/2,1
−1 (Ω) ↪→ Bp,1

3/p−3(Ω) for any p > 3
2

(cf. (4.50) for the last em-

bedding). (Parenthetically, we note that another interesting strictly smaller subspace of
Bp,1

3/p−3(Ω), when p > 1, is the local Hardy space h1(Ω)).) Moreover, as pointed out by

S. Mayboroda and V. Maz’ya in [28], it is not generally the case that ∇Gf is continuous on

Ω̄ for each f ∈ L3/2,1
−1 (Ω) if Ω lacks any smoothness.

To place this work in the proper perspective, let us recall some of the known positive
results and counterexamples in the case of the Laplacian. In their paper [19] on the inho-
mogeneous problem for the Laplacian in Lipschitz domains, D. Jerison and C. Kenig have
obtained well-posedness results on Sobolev spaces and the (diagonal) Besov scale Bp,p

α with
1 ≤ p ≤ ∞. With G denoting the Green operator associated with the Dirichlet Laplacian in
the Lipschitz domain Ω ⊂ Rn, they have shown that

∇2G : Bp,p
α (Ω)→ Bp,p

α (Ω) (1.22)
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boundedly whenever (α, 1/p) belongs to the subregion in Figure 1 corresponding to p ≥ 1.
The counterexamples given by D. Jerison and C. Kenig in [19] show that this subregion is
optimal, but only if one insists that p ≥ 1 (when all spaces involved are Banach). However,
the Besov scale Bp,p

α naturally continues below p = 1, though the corresponding spaces are
no longer locally convex. The consideration of the entire scales Bp,q

α , F p,q
α , 0 < p, q < ∞,

is also natural because Hardy spaces occur precisely when p ≤ 1 on the Triebel-Lizorkin
scale, and because Besov spaces with p < 1 offer a natural framework for certain types of
numerical approximation schemes.

When ∂Ω ∈ C∞ the operator ∂j∂kG falls under the scope of the classical theory of singular
integral operators of Calderón-Zygmund type. In particular, it maps Lp(Ω) boundedly into
itself for any 1 < p < ∞ – this is the point of view adopted by S. Agmon, A. Douglis and
L. Nirenberg in [2]. In fact, as alluded to before, it was proved by D. Chang, G. Dafni and
E. Stein in [7] that ∇2G also maps hp(Ω) boundedly into itself if n

n+1
< p ≤ 1, provided

∂Ω ∈ C∞. More general results of this type have been proved by J. Franke and T. Runst in
[18]. When specialized to the case of the bi-Laplacian, these imply that

∂Ω ∈ C∞ =⇒

{
problem (1.2) has a unique solution u ∈ Bp,q

s+ 1
p

+1
(Ω)

whenever 0 < p, q ≤ ∞ and s > (n− 1)
(

1
p
− 1
)

+
,

(1.23)

with a similar result on the Triebel-Lizorkin scale. Furthermore, simple counterexamples
show that the condition s ≥ (n − 1)

(
1
p
− 1
)

+
is necessary for the well-posedness of (1.2)

even when ∂Ω is C∞. The situation is drastically different in less smooth domains. For
example, B. Dahlberg has constructed in [10] a bounded C1-domain Ω along with a function
f ∈ C∞(Ω̄), such that ∂j∂kG f /∈ Lp(Ω) for any p > 1.

The methods developed by D. Jerison and C. Kenig in [19], although beautiful in their
elegance and sharpness, rely in an essential fashion on the maximum principle and, as such,
do not readily adapt to other natural boundary conditions, e.g., of Neumann type. In fact,
the latter issue was singled out as open problem # 3.2.21 in Kenig’s book [26]. Subsequently,
this has been solved by E. Fabes, O. Mendez and M. Mitrea in [16] – cf. also the work of
M. Mitrea and M. Taylor in [38] – via a new approach which relies on a systematic use of
singular integral operators. However, the works just cited still assumed p ≥ 1. The fact
that (1.22) actually holds for (α, 1/p) belonging to the region depicted in Figure 1 has been
shown in [30], using a blend of techniques from harmonic and functional analysis. From this
perspective, it was of importance that the solutions had integral representations. As already
mentioned, the case of the bi-Laplacian has been dealt with by V. Adolfsson and J. Pipher
in [1], albeit working directly with the problem, without providing integral representations
for solutions.

The present work makes heavy use of singular integral operators of Calderón-Zygmund
type, atomic estimates, and (functional analytic) perturbation theory. In particular, it
is strongly influenced by the earlier work of J. Pipher and G. Verchota in [43], whose key
achievement is an H1 atomic estimate in graph domains. For our current purposes we need
to rework the results in [43] in bounded star-like Lipschitz domains and with integral repre-
sentations. It should be noted that there are significant technical differences between these
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two cases. In particular, we find the correct formulation of the “non-standard” regularity
boundary value problem, then solve it, via singular integral operators.

Along the way, we deal with a number of related problems for ∆2, such as the Dirichlet
problem in a bounded Lipschitz domain Ω in Rn with boundary data from:

(i) Lp(∂Ω) provided 2− ε < p < 2 + ε, for n ≥ 3;

(ii) Lp1(∂Ω) provided 2− ε < p < 2 + ε, for n ≥ 3;

(iii) Lp(∂Ω) if 2− ε < p <∞, Cs(∂Ω) if 0 < s < ε, bmo (∂Ω), or vmo (∂Ω), for n = 3;

(iv) Lp1(∂Ω) if 1 < p < 2 + ε, or h1,p
at (∂Ω) if 1− ε < p ≤ 1, for n = 3,

where ε = ε(Ω) > 0. We also formulate and prove the well-posedness of the corresponding
exterior versions of these problems. Some of these results have already been treated in
the literature, albeit via a somewhat different approach, while others are new. See the
work of B. Dahlberg, C. Kenig and G. Verchota in [13], of J. Pipher and G. Verchota in [43],
[44]. Related work is by J. Pipher and G. Verchota in [42], [45], by Z. Shen in [51], [52], by
V. Maz’ya, S. Nazarov and B. Plamenevskii in [32], [33], by G. Verchota in [56], [57], [58], by
I. Mitrea and M. Mitrea in [36].
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2 Singular integrals in star-like Lipschitz domains

2.1 The geometry of star-like Lipschitz domains

Call a bounded open set Ω ⊂ Rn a bounded Lipschitz domain if there exists a finite open
covering {Oj}1≤j≤N of ∂Ω with the property that, for every j ∈ {1, ..., N}, Oj ∩Ω coincides
with the portion of Oj lying in the over-graph of a Lipschitz function ϕj : Rn−1 → R (where
Rn−1×R is a new system of coordinates obtained from the original one via a rigid motion).
As is well-known, for a Lipschitz domain Ω, the surface measure dσ is well-defined on ∂Ω
and there exists an outward pointing normal vector ν = (ν1, . . . , νn) at almost every point
on ∂Ω.

Given α > 0, we set

Γα(X) := {Y ∈ Ω : |X − Y | ≤ (1 + α) dist (Y, ∂Ω)} (2.1)

and denote by M = Mα the nontangential maximal operator associated with Ω. That is, for
a function u defined in Ω, set

8



(Mu)(X) := sup
Y ∈Γα(X)

|u(Y )|, X ∈ ∂Ω. (2.2)

Also, define the nontangential pointwise trace by

u
∣∣∣
∂Ω

(X) := lim
Y ∈Γα(X)

Y→X

u(Y ), X ∈ ∂Ω. (2.3)

Finally, adopt a similar definition for u|∂Ω− , in the case when u is defined in Rn \ Ω̄.
Assume next that n ≥ 2 and that

Ω ⊂ Rn is a bounded Lipschitz domain,

which is starlike with respect to the origin.
(2.4)

Then there exists

ϕ : Sn−1 −→ (0,∞), Lipschitz, (2.5)

(where Sn−1 = ∂B(0, 1) is the unit sphere in Rn, centered at the origin) such that, in polar
coordinates,

Ω = {rω : ω ∈ Sn−1, 0 ≤ r < ϕ(ω)}. (2.6)

In particular,

∂Ω = {ϕ(ω)ω : ω ∈ Sn−1}, (2.7)

the outward unit normal to ∂Ω, ν = (ν1, ..., νn), is given by

ν(ϕ(ω)ω) =
ϕ(ω)ω − (∇tanϕ)(ω)√
|(∇tanϕ)(ω)|2 + |ϕ(ω)|2

, for a.e. ω ∈ Sn−1, (2.8)

(where ∇tanϕ denotes the tangential gradient of ϕ on Sn−1), and surface measure σ on ∂Ω
satisfies

∫
∂Ω

f dσ =

∫
Sn−1

f(ωϕ(ω))[ϕ(ω)]n−2
√
|(∇tanϕ)(ω)|2 + |ϕ(ω)|2 dω, (2.9)

for any absolutely integrable function f on ∂Ω. See [21] for a proof. Here we only wish to
mention that we define the normalized Lipschitz constant of ϕ in (2.5) as

9



Lip (ϕ) :=

(
sup

ω,ω′∈Sn−1

|ϕ(ω)− ϕ(ω′)|
|ω − ω′|

)(
inf

ω∈Sn−1
ϕ(ω)

)−1

. (2.10)

Note that Lip (ϕ) is invariant under dilations of Ω in Rn. Throughout the paper, we set

Ω+ := Ω, Ω− := Rn \ Ω, (2.11)

(hence, the outward unit normal to Ω− is −ν) and define

η(X) := X, X ∈ Rn. (2.12)

For a function f : ∂Ω→ R, denote by f̃ the extension of (the pull-back to Sn−1 of) f as
a function homogeneous of degree zero in Rn \ {0}. Specifically, we define

f̃ : Rn \ {0} −→ R, f̃(X) := f
(
ϕ
(
X
|X|

)
X
|X|

)
. (2.13)

Then, with 〈·, ·〉 denoting the canonical inner product of vectors in Rn, a direct calculation
shows that

(∂j f̃)(X) = (∂jf)
(
ϕ
(
X
|X|

)
X
|X|

)
ϕ
(
X
|X|

)
1
|X|

+
〈
X
|X| , (∇f)

(
X
|X|

)〉
1
|X|

(
(∇tanϕ)

(
X
|X|

)
− ϕ

(
X
|X|

))
j

(2.14)

= ϕ
(
X
|X|

)
1
|X|

〈
(∇f)

(
X
|X|

)
, ej − νj

(
ϕ
(
X
|X|

)
X
|X|

)/〈
X
|X| , ν

(
ϕ
(
X
|X|

)
X
|X|

)〉〉
.

Specializing this to the case when X = ϕ(ω)ω for some ω ∈ Sn−1, we obtain

(∂j f̃)(X) =

〈
(∇f)(X) , ej −

νj(X)

〈X, ν(X)〉
X

〉
(2.15)

=

〈
(∇tanf)(X) , ej −

νj(X)

〈X, ν(X)〉
X

〉
, X ∈ ∂Ω,

since, for each j ∈ {1, ..., n}, the vector field

~Tj(X) := ej −
νj(X)

〈X, ν(X)〉
X, X ∈ ∂Ω, (2.16)

is tangential to ∂Ω. Above, ej := (δjk)1≤k≤n stands for the j-th vector in the standard
orthonormal basis in Rn, and ∇tanf denotes the tangential gradient of f on ∂Ω, i.e.
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∇tanf :=
(
νk∂τkjf

)
1≤j≤n

, (2.17)

with the summation convention over repeated indices understood. Here and elsewhere, ∂τjk
denotes the tangential derivative

∂τjk = νj∂k − νk∂j = ~Tjk · ∇, ~Tjk := νjek − νkej, j, k ∈ {1, ..., n}. (2.18)

In summary, with η(X) := X,

∂j f̃ =

〈
∇tanf , ej −

νj
〈η, ν〉

η

〉
= 〈∇tanf, ~Tj〉, on ∂Ω. (2.19)

Going further, call a family of n+ 1 functions defined on ∂Ω,

ḟ = (f0, f1, ..., fn), (2.20)

a Whitney array provided the following compatibility conditions are satisfied:

∂τjkf0 = νjfk − νkfj, j, k ∈ {1, ..., n}. (2.21)

Assuming that this the case, we compute

∂j f̃0 =

〈
∇tanf0 , ej −

νj
〈η, ν〉

η

〉
= νk(∂τkrf0)

(
δjr −

νjηr
〈η, ν〉

)
= (fr − νkνrfk)

(
δjr −

νjηr
〈η, ν〉

)
= fj −

νj
〈η, ν〉

ηkfk, (2.22)

i.e.,

∂j f̃0 = fj −
νj
〈η, ν〉

ηkfk on ∂Ω. (2.23)

For further reference, let us also remark the following. Define by ∆Sn−1 the Laplace-
Beltrami operator on Sn−1. Then, in polar coordinates,

∆Rn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 . (2.24)

Given f, g : Sn−1 → R, we also have

11



−
∫
Sn−1

(∆Sn−1f)(ω)g(ω) dω =

∫
Sn−1

〈∇tanf(ω),∇tang(ω)〉 dω (2.25)

=

∫
Sn−1

〈(∇f#)(ω), (∇g#)(ω)〉 dω,

where, in this context, ∇tan denotes the tangential gradient on Sn−1, and we have set
f#(X) := f(X/|X|) for X ∈ Rn \ {0}. In particular,

−
∫
Sn−1

(∆Sn−1f)(ω)f(ω) dω =

∫
Sn−1

|∇tanf(ω)|2 dω, (2.26)

so that

∆Sn−1f = 0 on Sn−1 ⇐⇒ f ≡ constant on Sn−1. (2.27)

2.2 The radial derivative

Define the radial derivative of a given function u as

(∇ηu)(X) := xj∂ju(X) = 〈X,∇u(X)〉, (2.28)

and note that we have the commutator identity

[
∇η, ∂k

]
= −∂k, 1 ≤ k ≤ n. (2.29)

As a result,

[
∆,∇η

]
= 2∆, (2.30)

i.e.,

∆(∇ηu) = 2∆u+∇η(∆u). (2.31)

In particular,

u harmonic =⇒ ∇ηu harmonic. (2.32)

Also, for any numbers 0 ≤ t0 < t1 <∞ and any point X,

12



∫ t1

t0

(∇ηu)(tX)
dt

t
=

∫ t1

t0

〈tX, (∇u)(tX)〉 dt
t

(2.33)

=

∫ t1

t0

d

dt

[
u(tX)

]
dt = u(t1X)− u(t0X).

Next, observe that if v ∈ C1 has v(0) = 0, then

H(X) :=

∫ 1

0

v(tX)
dt

t
(2.34)

is well-defined (that the properties of v ensure that the integral is convergent) and

∇ηH(X) = 〈X,∇H(X)〉 =

∫ 1

0

〈X, (∇v)(tX)〉 dt (2.35)

=

∫ 1

0

d

dt

[
v(tX)

]
dt = v(X).

That is, H is a normalized radial anti-derivative for v, i.e.,

∇ηH = v and H(0) = 0. (2.36)

Furthermore,

v harmonic =⇒ H harmonic. (2.37)

2.3 Smoothness spaces on Lipschitz boundaries

For a ∈ R set (a)+ := max{a, 0}. Consider three parameters p, q, s subject to

0 < p, q ≤ ∞, (n− 1)
(

1
p
− 1
)

+
< s < 1 (2.38)

and assume that Ω ⊂ Rn is the upper-graph of a Lipschitz function ϕ : Rn−1 → R. We then
define Bp,q

s (∂Ω) as the space of locally integrable functions f on ∂Ω for which the assignment
Rn−1 3 x 7→ f(x, ϕ(x)) belongs to Bp,q

s (Rn−1), the classical Besov space in Rn−1. We then
define

‖f‖Bp,qs (∂Ω) := ‖f(·, ϕ(·))‖Bp,qs (Rn−1) (2.39)
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As far as Besov spaces with a negative amount of smoothness are concerned, in the same
context as above we set

f ∈ Bp,q
s−1(∂Ω)⇐⇒ f(·, ϕ(·))

√
1 + |∇ϕ(·)|2 ∈ Bp,q

s−1(Rn−1), (2.40)

‖f‖Bp,qs−1(∂Ω) := ‖f(·, ϕ(·))
√

1 + |∇ϕ(·)|2‖Bp,qs−1(Rn−1). (2.41)

As is well-known, the case when p = q = ∞ corresponds to the usual (inhomogeneous)
Hölder spaces Cs(∂Ω), defined by the requirement that

‖f‖Cs(∂Ω) := ‖f‖L∞(∂Ω) + sup
X 6=Y

X,Y ∈∂Ω

|f(X)− f(Y )|
|X − Y |s

< +∞. (2.42)

That is,

B∞,∞s (∂Ω) = Cs(∂Ω) for s ∈ (0, 1). (2.43)

All the above definitions then readily extend to the case of (bounded) Lipschitz domains
in Rn via a standard partition of unity argument.

Proposition 2.1. Let Ω ⊂ Rn be a bounded Lipschitz domain and fix (n − 1)/n < p < ∞,
0 < q ≤ ∞, and (n − 1)(1

p
− 1)+ < s < 1. Then, for each j, k ∈ {1, ..., n}, the tangential

derivative operator

∂τjk : Bp,q
s (∂Ω) −→ Bp,q

s−1(∂Ω) (2.44)

is well-defined, linear and bounded.

We now proceed to discuss Triebel-Lizorkin spaces defined on the boundary of a bounded
Lipschitz domain Ω ⊂ Rn, denoted in the sequel by F p,q

s (∂Ω). Compared with the Besov
scale, the most important novel aspect here is the possibility of allowing the endpoint case
s = 1 as part of the general discussion if q = 2. To discuss this in more detail, assume that
either

0 < p <∞, 0 < q ≤ ∞, (n− 1)
( 1

min {p, q}
− 1
)

+
< s < 1, (2.45)

or

n− 1

n
< p <∞, q = 2, s = 1. (2.46)

In this scenario, the Triebel-Lizorkin scale in Rn−1 is invariant under pointwise multiplication
by Lipschitz maps as well as composition by Lipschitz diffeomorphisms.
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When Ω is a Lipschitz domain in Rn lying above the graph of a Lipschitz function
ϕ : Rn−1 → R, we may therefore define the space F p,q

s (∂Ω) as the collection of all locally
integrable functions f on ∂Ω such that

f(·, ϕ(·)) ∈ F p,q
s (Rn−1), (2.47)

endowed with the norm

‖f‖F p,qs (∂Ω) := ‖f(·, ϕ(·))‖F p,qs (Rn−1). (2.48)

Also, if Lip0 (∂Ω) stands for the collection of all compactly supported Lipschitz functions on
∂Ω, the space F p,q

s−1(∂Ω) is defined as the collection of all functionals f ∈ (Lip0 (∂Ω))′ such
that

f(·, ϕ(·))
√

1 + |∇ϕ(·)|2 ∈ F p,q
s−1(Rn−1), (2.49)

and we equip with space the quasi-norm

‖f‖F p,qs−1(∂Ω) := ‖f(·, ϕ(·))
√

1 + |∇ϕ(·)|2‖F p,qs−1(Rn−1). (2.50)

Finally, when Ω ⊂ Rn is a bounded Lipschitz domain and (s, p, q) are as in (2.45)-(2.46),
we define F p,q

s (∂Ω) and F p,q
s−1(∂Ω) via localization (using a smooth, finite partition of unity)

and pull-back to Rn−1 (in the manner described above, for graph-Lipschitz domains). When
equipped with the natural quasi-norms, the Triebel-Lizorkin spaces just introduced are quasi-
Banach, and different partitions of unity yield equivalent quasi-norms.

Two basic identities, relating Triebel-Lizorkin spaces to Sobolev spaces on ∂Ω read as
follows:

F p,2
0 (∂Ω) = Lp(∂Ω), F p,2

1 (∂Ω) = Lp1(∂Ω), ∀ p ∈ (1,∞). (2.51)

The second formula can be taken as a definition of the Lp-based Sobolev spaces of order
one on ∂Ω. For practical purposes, it is useful to point out an alternative characterization,
namely

Lp1(∂Ω) = {f ∈ Lp(∂Ω) : ∂τjkf ∈ Lp(∂Ω), 1 ≤ j, k ≤ n}, p ∈ (1,∞), (2.52)

with ‖f‖Lp1(∂Ω) ≈ ‖f‖Lp(∂Ω) +
∑

j,k ‖∂τjkf‖Lp(∂Ω) ≈ ‖f‖Lp(∂Ω) + ‖∇tanf‖Lp(∂Ω).
The above formulas have natural counterparts for values of p ≤ 1. More specifically, we

define

hpat(∂Ω) := F p,2
0 (∂Ω), h1,p

at (∂Ω) := F p,2
1 (∂Ω), n−1

n
< p ≤ 1. (2.53)
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In fact, introducing

hp(∂Ω) :=

{
hpat(∂Ω) if n−1

n
< p ≤ 1,

Lp(∂Ω) if 1 < p <∞,
hp1(∂Ω) :=

{
h1,p
at (∂Ω) if n−1

n
< p ≤ 1,

Lp1(∂Ω) if 1 < p <∞,
(2.54)

we can combine (2.51)-(2.53) into

hp(∂Ω) = F p,2
0 (∂Ω), hp1(∂Ω) = F p,2

1 (∂Ω), n−1
n
< p <∞. (2.55)

The Hardy spaces thus defined turn out to coincide with those constructed based on atomic
and molecular theories. Here we only briefly elaborate on this point.

The (inhomogeneous) Hardy space hpat(∂Ω) has the following atomic characterization. Fix
a threshold ro > 0 and an index 1 < po ≤ ∞. Call a function a ∈ L1(∂Ω) an inhomogeneous
(p, po)-atom if for some surface ball ∆r := B(X, r) ∩ ∂Ω, X ∈ ∂Ω, r > 0,

supp a ⊆ ∆r, ‖a‖Lpo (∂Ω) ≤ r(n−1)
(

1
po
− 1
p

)
, and

either r = η, or r < ro and

∫
∂Ω

a dσ = 0.
(2.56)

Then hpat(∂Ω) can be described as the `p-span of inhomogeneous (p, po)-atoms, with the
infimum of the `p norm of the sequence of coefficients (taken over all representations) yielding
an equivalent quasi-norm. This characterization allows to check that this is a “local” quasi-
Banach space, in the sense that

hpat(∂Ω) is a module over Cα(∂Ω) for any α > (n− 1)
(

1
p
− 1
)
. (2.57)

The actual choices of the parameters po, ro is immaterial, and

(
hpat(∂Ω)

)∗
= C

(n−1)
(

1
p
−1
)
(∂Ω). (2.58)

Prior to discussing the dual of h1
at(∂Ω) we recall the local BMO space. For some fixed

0 < ro < diam (∂Ω), this is introduced as

f ∈ bmo (∂Ω)
def⇐⇒ f ∈ L2(∂Ω) and sup

∆r surface ball
with r ≤ ro

∫
−

∆r

|f − f∆r | dσ <∞ (2.59)

(with f∆r :=
∫
−

∆r
f dσ, where the barred integral indicates averaging), and is equipped with

the natural norm. Then (cf. [9])
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(
h1
at(∂Ω)

)∗
= bmo (∂Ω) and h1

at(∂Ω) =
(

vmo (∂Ω)
)∗
, (2.60)

where

f ∈ vmo (∂Ω)
def⇐⇒ f ∈ bmo (∂Ω) and lim

R→0

 sup
∆r surface ball

with r ≤ R

∫
−

∆r

|f − f∆r | dσ

 = 0 (2.61)

is Sarason’s space of functions of vanishing mean oscillation. Let us point out that, for each
s ∈ (0, 1), an alternative characterization of the latter space is

vmo (∂Ω) = the closure of Cs(∂Ω) in bmo (∂Ω). (2.62)

Later on, we shall also need the homogeneous Hardy space, which we denote by Hp
at(∂Ω),

defined for n−1
n
< p ≤ 1 as follows:

Hp
at(∂Ω) :=

{
f =

∑
j

λjaj : aj (p, po)-atom, (λj)j ∈ `p
}
, (2.63)

where the series converges in Lip(∂Ω)′, the dual of the space of Lipschitz functions on ∂Ω,
and equipped with the usual infimum norm. Here, 1 < po ≤ ∞ is a fixed parameter and
a measurable function a : ∂Ω → R is called a (p, po)-(homogeneous) atom if there exists a
surface ball ∆r ⊆ ∂Ω such that

supp a ⊆ ∆r, ‖a‖Lpo (∂Ω) ≤ r−(n−1)
(

1
po
− 1
p

)
and

∫
∂Ω

a dσ = 0. (2.64)

It is not too difficult to verify that

hpat(∂Ω) = Hp
at(∂Ω) + R = Hp

at(∂Ω) + Lq(∂Ω) for each q > 1,

hpat(∂Ω), h1,p
at (∂Ω) are modules over Lip (∂Ω).

(2.65)

In relation to the regular Hardy space h1,p
at (∂Ω), we wish to mention that, if Ω, p, po are

as before, and ro > 0 is fixed, then

h1,p
at (∂Ω) =

{
f ∈ Lip (∂Ω)′ : f =

∑
j

λjaj, (λj)j ∈ `p and aj regular (p, po)-atom

supported in a surface ball of radius ≤ ro for every j
}
, (2.66)
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where the series converges in Lip (∂Ω)′, with ‖f‖h1,p
at (∂Ω) equivalent to the infimum of ‖(λj)j‖`p ,

taken over all representations f =
∑

j λjaj. Here, if (n−1)/n < p ≤ 1 < po ≤ ∞, a function
a ∈ Lpo1 (∂Ω) is called a regular (p, po)-atom if there exists a surface ball ∆r so that

supp a ⊆ ∆r, ‖∇tana‖Lpo (∂Ω) ≤ r(n−1)
(

1
po
− 1
p

)
. (2.67)

Also, if

1
p∗

= 1
p
− 1

n−1
(2.68)

then

h1,p
at (∂Ω) =

{
f ∈ Lp∗(∂Ω) : ∂τjkf ∈ H

p
at(∂Ω), 1 ≤ j, k ≤ n

}
=

{
f ∈ Lp∗(∂Ω) : ∂τjkf ∈ h

p
at(∂Ω), 1 ≤ j, k ≤ n

}
(2.69)

and

‖f‖h1,p
at (∂Ω) ≈ ‖f‖Lp∗ (∂Ω) +

n∑
j,k=1

‖∂τjkf‖Hp
at(∂Ω) ≈ ‖f‖Lp∗ (∂Ω) +

n∑
j,k=1

‖∂τjkf‖hp(∂Ω). (2.70)

We conclude this subsection with a brief discussion of smoothness spaces consisting of
Whitney arrays. The general recipe is as follows. Given a smoothness space X on ∂Ω, set

WA
(
X
)

:=
{
ḟ = (f0, f1, ..., fn) : fj ∈X , 0 ≤ j ≤ n, and satisfy (2.21)

}
, (2.71)

which we equip with the (quasi-)norm

‖ḟ‖WA(X ) :=
n∑
j=0

‖fj‖X . (2.72)

In this paper, we shall primarily work with WA
(
Bp,q
s (∂Ω)

)
where s, p, q are as in (2.38),

WA
(
Lp(∂Ω)

)
and WA

(
Lp1(∂Ω)

)
with 1 < p <∞, as well as WA

(
hpat(∂Ω)

)
and WA

(
h1,p
at (∂Ω)

)
considered for n−1

n
< p ≤ 1.

2.4 The Kelvin transform associated to the bi-Laplacian

Let Ω ⊂ Rn, n ≥ 3, be a set satisfying 0 /∈ Ω and assume that u : Ω → R is a function.
Define the Kelvin transform of u as

K [u](X) := |X|4−nu
(

X
|X|2
)
, X ∈ Ω̃, (2.73)
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where

Ω̃ :=
{
X ∈ Rn : X

|X|2 ∈ Ω
}
. (2.74)

Then K almost commutes with the bi-Laplacian in the sense that

(
∆2K [u]

)
(X) = K [|X|8∆2u](X), X ∈ Ω̃, (2.75)

if Ω open and u ∈ C4(Ω). In particular, in this latter case,

∆2u ≡ 0 in Ω =⇒ ∆2K [u] ≡ 0 in Ω̃. (2.76)

It is straightforward to check that the Kelvin transform is linear, involutive, i.e.,

K [K [u]] = u, (2.77)

and that, if α ∈ Nn and N ∈ R, then

K
[
Xα

|X|N u
]

(X) = Xα

|X|2|α|−N K [u](X). (2.78)

We wish to study how other characteristics of the ambient change under the mapping

F : Ω −→ Rn, F (X) := X
|X|2 . (2.79)

Note that

F (Ω) = Ω̃ and F−1(Y ) = Y
|Y |2 for Y ∈ Ω̃. (2.80)

In this scenario, the following result, of general nature, from [21] is going to be useful for us.

Proposition 2.2. Let Ω ⊂ Rn be a bounded Lipschitz domain, O an open neighborhood of
Ω, and let F : O → Rn be an orientation preserving C∞-diffeomorphism.

Then Ω̃ := F (Ω) is a Lipschitz domain and if ν, ν̃ and σ, σ̃ are, respectively, the outward

unit normals and surface measures on ∂Ω and ∂Ω̃, then

ν̃ =
(DF−1)>(ν ◦ F−1)

|(DF−1)>(ν ◦ F−1)|
, (2.81)

σ̃ = |(DF−1)>(ν ◦ F−1)| (| detDF | ◦ F−1)F∗σ, (2.82)
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where (DF−1)> denotes the transposed of the Jacobian matrix of F−1, and F∗σ is the push-
forward of the measure σ.

Furthermore, for each α > 0 there exists β > 0 such that

F (Γα(X)) ⊆ Γ̃β(F (X)), X ∈ ∂Ω, (2.83)

where Γ̃β stands for the cone as in (2.1) relative to the domain Ω̃.

Below, we study how Besov-Triebel-Lizorkin spaces change under mappings such as the one
in (2.79).

Proposition 2.3. In the context of Proposition 2.2, for every function f on ∂Ω

f ∈ Bp,q
s (∂Ω)⇐⇒ f ◦ F−1 ∈ Bp,q

s (∂Ω̃), (2.84)

if s, p, q are as in (2.38), and

f ∈ Lp(∂Ω)⇐⇒ f ◦ F−1 ∈ Lp(∂Ω̃), f ∈ Lp1(∂Ω)⇐⇒ f ◦ F−1 ∈ Lp1(∂Ω̃), (2.85)

if 1 < p <∞. Also, if n−1
n
< p ≤ 1,

f ∈ h1,p
at (∂Ω)⇐⇒ f ◦ F−1 ∈ h1,p

at (∂Ω̃), (2.86)

and

f ∈ bmo (∂Ω)⇐⇒ f ◦ F−1 ∈ bmo (∂Ω̃). (2.87)

Moreover, if 0 < p <∞, then for every function u in Ω,

M(u) ∈ Lp(∂Ω)⇐⇒M(u ◦ F−1) ∈ Lp(∂Ω̃). (2.88)

Finally, anticipating notation introduced in § 4.2, for every distribution u in Ω

u ∈ Bp,q
α (Ω)⇐⇒ u ◦ F−1 ∈ Bp,q

α (Ω̃), (2.89)

u ∈ F p,q
α (Ω)⇐⇒ u ◦ F−1 ∈ F p,q

α (Ω̃), (2.90)

if 0 < p, q ≤ ∞ (with p <∞ in the case of Triebel-Lizorkin spaces), and α ∈ R.
In all cases, a natural estimate holds.
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Proof. When p = q, (2.84) follows from Proposition 2.2 and the equivalence

‖f‖Bp,ps (∂Ω) ≈ ‖f‖Lp(∂Ω) +

(∫
∂Ω

∫
∂Ω

|f(X)− f(Y )|p

|X − Y |n−1+sp
dσ(X)dσ(Y )

)1/p

, (2.91)

valid for (n− 1)/n < p <∞ and (n− 1)(1/p− 1)+ < s < 1, whenever Ω ⊂ Rn is a Lipschitz
domain with compact boundary. The case of off-diagonal Besov spaces is then a consequence
of this and real interpolation.

Next, the first equivalence in (2.85) is a direct consequence of Proposition 2.2. Consider
now the second equivalence in (2.85). For each j, k ∈ {1, . . . , n}, denoting by ∂eτjk the

tangential derivative on ∂Ω̃ given by ν̃j∂k − ν̃k∂j, we have

∂eτjk(f ◦ F−1) = ν̃j∂k(f ◦ F−1)− ν̃k∂j(f ◦ F−1)

= ν̃j
(
(∂`f) ◦ F−1

)
∂kF

−1
` − ν̃k

(
(∂rf) ◦ F−1

)
∂jF

−1
r . (2.92)

Employing Proposition 2.2 we further write

ν̃j
(
(∂`f) ◦ F−1

)
∂kF

−1
` =

(
(DF−1)>(ν ◦ F−1)

)
j

(
∇f ◦ F−1

)
`
(DF−1)`k

=
[
(DF−1)>

(
(∇f ◦ F−1)⊗ (ν ◦ F−1)

)
(DF−1)

]
kj
, (2.93)

where for two vectors a, b ∈ Rn with a = (a1, . . . , an) and b = (b1, . . . , bn), we have set a⊗ b
to stand for the n× n matrix whose ij entry is given by

(a⊗ b)ij := aibj, i, j ∈ {1, . . . , n}. (2.94)

Thus, based on (2.92) and (2.93),

∂eτjk(f ◦ F−1) =
[
(DF−1)>

(
(∇f ◦ F−1)⊗ (ν ◦ F−1)

)
(DF−1)

]
kj

−
[
(DF−1)>

(
(∇f ◦ F−1)⊗ (ν ◦ F−1)

)
(DF−1)

]
jk
. (2.95)

This further gives,

∂eτjk(f ◦ F−1) =
[
(DF−1)>

(
a⊗ b− b⊗ a

)
(DF−1)

]
kj

(2.96)

where

a := ∇f ◦ F−1 and b := ν ◦ F−1. (2.97)

Since, generally speaking, a ⊗ b − b ⊗ a = ab ⊗ b − b ⊗ ab where ab := a − (a · b)b, we may
finally conclude that, for every j, k,
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∂eτjk(f ◦ F−1) =
[
(DF−1)>

[(
∇tanf ⊗ ν − ν ⊗∇tanf

)
◦ F−1

]
(DF−1)

]
kj
. (2.98)

With this in hand, the second equivalence in (2.85) follows from (2.52) and Proposition 2.2.
Note that (2.86) also follows from (2.98) and (2.66). In fact (2.87) is proved using similar
arguments.

Moving on, (2.88) is implied by (2.83) and the well-known fact that, for every α, β > 0
and 0 < p <∞,

‖Mα(u)‖Lp(∂Ω) ≈ ‖Mβ(u)‖Lp(∂Ω), (2.99)

uniformly in u. Finally, (2.89)-(2.90) follow from Rychkov’s extension theorem in [49], and
the fact that Bp,q

α (Rn), F p,q
α (Rn) are locally invariant under C∞-diffeomorphisms. This fin-

ishes the proof of the proposition. �

For the purpose of studying how the Dirichlet data for the bi-Laplacian changes under the
transformation (2.73), we find it useful to introduce the following boundary Kelvin transform.

Definition 2.1. Set

Kb(f0, f1, · · · , fn) := (g0, g1, · · · , gn), (2.100)

where

g0(Y ) := |Y |4−nf0

(
Y
|Y |2
)
, (2.101)

and, for each k ∈ {1, 2, · · · , n},

gk(Y ) := (4− n)yk|Y |2−nf0

(
Y
|Y |2
)

+
(
δjk − 2yjyk

|Y |2
)
|Y |2−nfj

(
Y
|Y |2
)
. (2.102)

The above definition is designed to ensure that, at least formally,

f0 := u
∣∣∣
∂Ω
,

fj := (∂ju)
∣∣∣
∂Ω
, 1 ≤ j ≤ n,

v := K [u],

g0 := v
∣∣∣
∂Ω
,

gj := (∂jv)
∣∣∣
∂Ω
, 1 ≤ j ≤ n


=⇒ (g0, g1, · · · , gn) = Kb(f0, f1, · · · , fn). (2.103)

Recall (2.71)-(2.72).
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Proposition 2.4. Assume that Ω ⊂ Rn is a bounded Lipschitz domain for which 0 /∈ ∂Ω,
and define Ω̃ as in (2.74). Also, let s, p, q be as in (2.38). Then

Kb : WA
(
Bp,q
s (∂Ω)

)
−→ WA

(
Bp,q
s (∂Ω̃)

)
(2.104)

is a well-defined, linear and bounded operator, and (with a slight abuse of notation)

Kb

(
Kb(f0, f1, · · · , fn)

)
= (f0, f1, · · · , fn) (2.105)

for every ḟ = (f0, f1, ..., fn) ∈ WA
(
Bp,q
s (∂Ω)

)
.

Moreover, similar properties hold for Kb considered on WA
(
Lp(∂Ω)

)
and WA

(
Lp1(∂Ω)

)
if

1 < p <∞, as well as WA
(
h1,p
at (∂Ω)

)
if n−1

n
< p ≤ 1.

Proof. The fact that (2.104) is well-defined and bounded follows from (2.100)-(2.102), Propo-
sition 2.3 and Proposition 2.2. The involutive property (2.105) is then a consequence of defi-
nitions and (2.77)-(2.78). The claims in the last part of the statement are proved analogously.
�

Let R > 0 and assume that u is a bi-harmonic function outside the ball B(0, R) ⊂ Rn,
n ≥ 3. Call u biharmonic at infinity if K [u], as a bi-harmonic function in B(0, R−1) \ {0},
has a removable singularity at the origin. Generally speaking, it is known that a biharmonic
function v in B(0, R−1) \ {0} has a removable singularity at 0 if

v(X) = o(|X|4−n) as X → 0. (2.106)

In fact, continuing to assume that n ≥ 3,

v has a removable singularity at 0⇐⇒

{
v(X) = o(|X|2−n)

(∆v)(X) = o(|X|2−n)
as X → 0. (2.107)

See [22] for these and other related results.

Proposition 2.5. Assume that u is a bi-harmonic function in the complement of a ball
centered at the origin in Rn, n ≥ 3. Then u is bi-harmonic at infinity if and only if

lim
X→∞

u(X)

|X|2
= 0 and lim

X→∞

{
2(4− n)u(X)− 4X · (∇u)(X) + |X|2(∆u)(X)

}
= 0. (2.108)

Proof. By definition, u is biharmonic at infinity if and only if v(X) := K [u](X) has a
removable singularity at 0. Employing (2.107) this further implies

u is biharmonic at infinity⇐⇒

 lim
X→0

v(X)
|X|2−n = lim

X→∞
u(X)
|X|2 = 0,

lim
X→0

(∆v)(X)
|X|2−n = 0.

(2.109)
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The last equality in the first line of the right-hand side of (2.109) justifies the first condition
in (2.108). As for the second one, a straightforward calculation based on the definition of v
shows that

∆v(X)
|X|2−n = 2nu

(
X
|X|2
)

+ 1
|X|2 (∆u)

(
X
|X|2
)

+ 2
∇|X|2·∇


|X|2−nu

(
X
|X|2
)ff

|X|2−n

= 2(4− n)u
(

X
|X|2
)
− 4 X

|X|2 · (∇u)
(

X
|X|2
)

+ 1
|X|2 (∆u)

(
X
|X|2
)
, (2.110)

from which the desired conclusion follows (after changing X into X
|X|2 ). �

2.5 Singular integral operators related to the Laplacian

Recall that η(X) := X, for X ∈ Rn, fix a bounded Lipschitz domain Ω in Rn, and denote
by Γ the canonical fundamental solution for the Laplacian ∆ = ∂j∂j in Rn. That is,

Γ(X) :=


1

ωn−1(2− n)

1

|X|n−2
, if n ≥ 3,

1

2π
log |X|, if n = 2,

X ∈ Rn \ {0}, (2.111)

where ωn is the surface measure of the unit sphere Sn−1 in Rn. With p.v. labeling boundary
integrals which are taken in the principal value sense, then set

Rf(X) := p.v.

∫
∂Ω

〈X, (∇Γ)(X − Y )〉f(Y ) dσ(Y ), X ∈ ∂Ω (2.112)

Rf(X) :=

∫
∂Ω

〈Y, (∇Γ)(X − Y )〉f(Y ) dσ(Y ), X 6∈ ∂Ω. (2.113)

Also, recall the harmonic single layer and its boundary version given, respectively, by

Sf(X) :=

∫
∂Ω

Γ(X − Y )f(Y ) dσ(Y ), X 6∈ ∂Ω, (2.114)

Sf(X) :=

∫
∂Ω

Γ(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (2.115)

Recall (2.1)-(2.3).

Lemma 2.6. Let Ω ⊂ Rn, n ≥ 2, be an arbitrary, bounded Lipschitz domain. Then the
following hold:

(1) 〈X,∇Sf(X)〉
∣∣∣
∂Ω±

=
(
∓1

2
〈η, ν〉I +R

)
f(X), X ∈ ∂Ω.
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(2) R∗f(X) = −p.v.
∫
∂Ω
〈Y, (∇Γ)(X − Y )〉f(Y ) dσ(Y ), X ∈ ∂Ω.

(3) Rf
∣∣∣
∂Ω±

(X) = −
(
±1

2
〈η, ν〉I +R∗

)
f(X), X ∈ ∂Ω.

(4) Rf(X) = divS(fη)(X), X 6∈ ∂Ω.

(5) ‖M(Rf)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), 1 < p <∞.

(6) R, R∗ : Lp(∂Ω)→ Lp(∂Ω), boundedly for 1 < p <∞.

(7) Rf +R∗f = (2−n)Sf on ∂Ω if n ≥ 3, and Rf +R∗f = − 1
2π

∫
∂Ω
f dσ on ∂Ω if n = 2.

(8) ∇ηSf − divS(fη) = (2 − n)Sf if n ≥ 3, and ∇ηSf − divS(fη) = − 1
2π

∫
∂Ω
f dσ if

n = 2, in Rn \ ∂Ω.

Proof. Properties (1)-(6) follow from the fact that

‖M(∇Sf)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω) (2.116)

and, with ∂jS denoting the boundary integral operator with kernel (∂jΓ)(X − Y ),

∂jSf
∣∣∣
∂Ω±

=
(
∓1

2
νjI + p.v.∂jS

)
f, 1 ≤ j ≤ n. (2.117)

As for (7), observe from (2.111) that ∇ηΓ = (2 − n)Γ if n ≥ 3, and ∇ηΓ = − 1
2π

if n = 2.
Since the integral kernel of R + R∗ is (∇ηΓ)(X − Y ), the desired conclusion follows. The
identity in (8) is proved similarly. �

Recall next the so-called harmonic double layer

Df(X) :=
1

ωn−1

∫
∂Ω

〈Y −X, ν(Y )〉
|X − Y |n

f(Y ) dσ(Y ), X 6∈ ∂Ω, (2.118)

and, with ∂ν = ν · ∇ denoting the normal derivative, observe that

Df(X) =

∫
∂Ω

∂ν(Y )

[
Γ(X − Y )

]
f(Y ) dσ(Y ). (2.119)

Consequently, for every index j ∈ {1, . . . , n} and every function f ∈ Lp1(∂Ω), 1 < p <∞, we
have

∂jDf(X) = ∂kS(∂τjkf)(X). (2.120)

In particular, using
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νjνk∂τjk = 0 (2.121)

we obtain

∂νDf = 1
2
∂τjkS(∂τjkf). (2.122)

Let us also record here the jump-formulas for the harmonic double layer, namely,

Df
∣∣∣
∂Ω±

=
(
±1

2
I +K

)
f (2.123)

where

Kf(X) :=
1

ωn−1

p.v.

∫
∂Ω

〈Y −X, ν(Y )〉
|X − Y |n

f(Y ) dσ(Y ), X ∈ ∂Ω. (2.124)

Then ∂±ν Sf = (∓1
2
I +K∗)f where K∗ is the adjoint of K, and ∂±ν indicates that the normal

derivative has been taken by approaching the boundary from inside Ω±. Also, given (2.123),
it follows that the so-called “Poisson integral” operator, mapping a boundary function into
its harmonic extension in the given domain, can then be expressed as

P := D
(

1
2
I +K

)−1

, (2.125)

granted that the inverse exists.

Lemma 2.7. If Ω ⊂ Rn, n ≥ 2, is a bounded, Lipschitz domain which is star-like with
respect to the origin, then there exists ε > 0 such that the mappings

1
2
〈η, ν〉I +R : Lp(∂Ω) −→ Lp(∂Ω),

1
2
〈η, ν〉I +R∗ : Lp(∂Ω) −→ Lp(∂Ω),

(2.126)

are isomorphisms for every p ∈ (2− ε, 2 + ε).

Proof. By stability and duality it is enough to show that the mapping

1
2
〈η, ν〉I +R : L2(∂Ω)→ L2(∂Ω) (2.127)

is invertible. To this end, write

1
2
〈η, ν〉I +R =

[
1
2
〈η, ν〉I +

(R−R∗
2

)]
+
(R +R∗

2

)
(2.128)
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and observe that R + R∗ has integral kernel 〈X − Y, (∇Γ)(X − Y )〉 = O(|X − Y |2−n).
Thus, R + R∗ : Lp(∂Ω) → Lp(∂Ω) is compact for all p ∈ (1,∞). On the other hand, since
〈η, ν〉 ≥ κ > 0 almost everywhere on ∂Ω, it follows that 1

2
〈η, ν〉I +

(
R−R∗

2

)
is accretive on

L2(∂Ω), hence invertible on L2(∂Ω). All together, this proves that the operator in (2.127) is
Fredholm with index zero.

There remains to show that it is also one-to-one. To see this, let f ∈ L2(∂Ω) be such that(
1
2
〈η, ν〉I +R

)
f = 0 and set u := ∇ηSf in Rn \ Ω̄. Then by (2.32), (2.117) and Lemma 2.6,



∆u = 0 in Rn \ Ω̄,

M(u) ∈ L2(∂Ω),

u(X) = O(|X|2−n) as |X| → ∞,

u
∣∣∣
∂Ω

= 0.

(2.129)

Uniqueness in the exterior Dirichlet boundary value problem then gives that ∇ηSf = 0 in
Rn \ Ω̄. Fix r > 1 and X ∈ Rn \ Ω̄ and write

0 =

∫ r

1

(∇ηSf)(tX)
dt

t
= (Sf)(rX)− (Sf)(X). (2.130)

We claim that this forces Sf = 0 in Rn \ Ω̄. Accepting this for a moment, note that going to
the boundary yields Sf = 0 on ∂Ω, hence Sf = 0 in Ω, by the uniqueness in the L2-Dirichlet
problem in Ω. Thus, ultimately, f = ∂−ν Sf − ∂+

ν Sf = 0. This proves that the operator in
(2.127) is also one-to-one, thus, invertible.

Returning to the claim made above, when n ≥ 3 let r → ∞ in (2.130) and obtain
(Sf)(rX) → 0 so ultimately Sf = 0 in Rn \ Ω̄, as wanted. When n = 2, (2.130) gives
Sf(X) = 1

2π

∫
∂Ω

[log r + log |X − (Y/r)|]f(Y ) dσ(Y ). Analyzing two cases,
∫
∂Ω
f dσ 6= 0 and∫

∂Ω
f dσ = 0, and then passing r →∞, we once again arrive at the conclusion that Sf = 0

in Rn \ Ω̄. This justifies the claim and finishes the proof of the lemma. �

The lemma below is going to be useful in § 3.5.

Lemma 2.8. Let Ω ⊂ Rn, n ≥ 3, be a bounded Lipschitz domain. Also, assume that
m ∈ L∞(∂Ω) is such that there exists κ > 0 for which m(X) ≥ κ for a.e. X ∈ ∂Ω. Then

I −mS : hp(∂Ω) −→ hp(∂Ω) (2.131)

is an invertible operator for n−1
n
< p <∞.

Proof. Since the operator in question is Fredholm with index zero, it suffices to show that
I −mS is one-to-one on L2(∂Ω). To this end, we observe that for every f ∈ L2(∂Ω)

∫
∂Ω

(∓1
2
I +K∗)f Sf dσ = ±

∫
Ω±

|∇Sf |2 dX. (2.132)
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Subtracting the two versions of (2.132) then gives

∫
∂Ω

f Sf dσ = −
∫

Rn
|∇Sf |2 dX ≤ 0. (2.133)

Hence S ≤ 0 on L2(∂Ω) which, in turn, implies that I −mS is one-to-one on L2(∂Ω). �

We continue to review material which is going to be useful in § 3.5. Given a bounded
Lipschitz domain Ω ⊂ Rn, n ≥ 3, let fo be the unique function such that

fo ∈ L2+ε(∂Ω),

∫
∂Ω

fo dσ 6= 0, and Sfo ≡ 1 on ∂Ω, (2.134)

where ε = ε(Ω) > 0. Then

S :
{
f ∈ Lp(∂Ω) :

∫
∂Ω

ffo dσ = 0
}
−→ Lp1(∂Ω)/R (2.135)

is an isomorphism if 1 < p < 2 + ε.
Although we will not need this here, let us nonetheless mention that

−1
2
〈η, ν〉I +R :

{
f ∈ Lp(∂Ω) :

∫
∂Ω

ffo dσ = 0
}
−→ Lpω(∂Ω) (2.136)

is an isomorphism whenever 2− ε < p < 2 + ε. Above,

Lpω(∂Ω) := {f ∈ Lp(∂Ω) : Pf(0) = 0}. (2.137)

In relation to this, we make the following observation which is going to be useful for us later.

Lemma 2.9. If Ω is as in (2.4), then

|η|2 /∈ Lpω(∂Ω), ∀ p > 2− ε. (2.138)

Proof. Let u := P|η|2. Then u is harmonic in Ω and continuous on Ω̄. The Maximum
Principle then gives

u(0) ≥ min
Ω̄
u = min

∂Ω
u = min

X∈∂Ω
|X|2 = dist (0, ∂Ω)2 > 0. (2.139)

Hence, u(0) 6= 0, proving (2.138). �

We now briefly recall the Newtonian volume potential for the Laplacian. Specifically,
given a function v ∈ L1(Ω), we set
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(Γv)(X) :=

∫
Ω

Γ(X − Y )v(Y ) dY, X ∈ Rn, (2.140)

and note that

Γv is harmonic in Ω−, (2.141)

and

(∂αΓv)
∣∣∣
∂Ω+

= (∂αΓv)
∣∣∣
∂Ω−

, if |α| ≤ 1. (2.142)

Also, if we denote by B the canonical fundamental solution for ∆2 in Rn, i.e.,

B(X) :=



|X|4−n

2(n− 4)(n− 2)ωn
if n = 3 or n > 4,

− 1

4ω4

log|X| if n = 4,

1

8π
|X|2 log |X| if n = 2,

X ∈ Rn \ {0}, (2.143)

then

Γ(X) = ∆B(X), X ∈ Rn \ {0}. (2.144)

Throughout the paper, ∇∇ will denote generic combinations of second order partial
derivatives.

Lemma 2.10. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then for every p ∈ (n−1
n
,∞)

there exists C = C(Ω, p) > 0 such that

‖M(∇∇Γ(∇ηSf))‖Lp(∂Ω) ≤ C‖f‖hp(∂Ω). (2.145)

Proof. We shall show that

∫
Ω

Γ(X − Y )∇ηSf(Y ) dY =

∫
∂Ω

∇Y
η

[
B(X − Y )

]
(−1

2
I +K∗)f(Y ) dσ(Y ) (2.146)

−
∫
∂Ω

yj ∂
Y
k

[
B(X − Y )

]
(∂τjkSf)(Y ) dσ(Y )

+(n− 2)

∫
∂Ω

B(X − Y )(−1
2
I +K∗)f(Y ) dσ(Y ).

29



From this and Calderón-Zygmund theory, (2.145) follows.
To this end, let us first make the observation that for any two reasonable functions F , G

and any k ∈ {1, ..., n}, there holds

∫
Ω

∂kF∇ηGdX =

∫
Ω

∇ηF∂kGdX −
∫
∂Ω

Fηj∂τjkGdσ + (n− 1)

∫
Ω

F∂kGdX. (2.147)

For example, (2.147) is valid if Ω ⊂ Rn is a bounded Lipschitz domain and

F,G ∈ C1(Ω), |∇F ||∇G| ∈ L1(Ω), M(|F ||∇G|) ∈ Lp(∂Ω) some p > 1

and F∇G has a nontangential trace on ∂Ω.
(2.148)

Indeed, under the above assumptions, the Divergence Theorem applied to the vector field
U := −F∂kGη + F∇ηGek yields (2.147). Using this identity we have

∫
Ω

Γ(X − Y )∇ηSf(Y ) dY =

∫
Ω

∂Yk ∂
Y
k

[
B(X − Y )

]
∇ηSf(Y ) dY (2.149)

=

∫
Ω

∇Y
η ∂

Y
k

[
B(X − Y )

]
∂kSf(Y ) dY

−
∫
∂Ω

yj ∂
Y
k

[
B(X − Y )

]
(∂τjkSf)(Y ) dσ(Y )

+(n− 1)

∫
Ω

∂Yk

[
B(X − Y )

]
∂kSf(Y ) dY.

For the first solid integral in the right-most side above use (2.29) then integrate ∂Yk by parts
and use the fact that ∂k∂kSf = 0 and νk∂kSf = (−1

2
I +K∗)f on ∂Ω. We also integrate by

parts in the last solid integral in order to finally obtain (2.146). �

In relation to the estimate proved in Lemma 2.10 we make the following:

Remark. Let Ω be a bounded Lipschitz domain in Rn. Then there exists ε = ε(Ω) > 0
and C > 0 with the following significance. For any harmonic function v in Ω such that
M(v) ∈ Lp(∂Ω) for some p > 2− ε, we have M(∇∇Γ(v)) ∈ Lp(∂Ω) and

‖M(∇∇Γ(v))‖Lp(∂Ω) ≤ C‖v‖Lp(∂Ω). (2.150)

To see this, note that any function v which is harmonic in Ω and satisfies M(v) ∈ Lp(∂Ω)
for some p > 2 − ε (with ε > 0 small enough, depending on Ω), can be represented in the
form v = Df for some f ∈ Lp(∂Ω). Consequently, Γ(v) = Γ(Df) so that the member-
ship M(∇∇Γ(v)) ∈ Lp(∂Ω) and the estimate (2.150) follow immediately from (2.189) and
Calderón-Zygmund theory.

We now record an estimate, modeled upon lemma on page 213 of [53]. Given the useful-
ness of this type of result in a variety of situations, below we state and prove a slightly more
general version than the one we shall actually need later on.
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Lemma 2.11. Suppose Γaα ⊂ Γbβ ⊂ Rn are two coaxial, truncated, circular cones with a
common vertex X∗ ∈ Rn, whose apertures α, β and heights a, b satisfy 0 < α < β < π and
0 < a < b < ∞. Also, fix a vector ξ ∈ Sn−1 ∩ {t(X − X∗) : X ∈ Γaα, t > 0} and assume
that u ∈ C∞(Γbβ) is a null-solution of a homogeneous, constant coefficient elliptic operator L.
Then, for each 1 ≤ q < ∞ and −∞ < r < n− 1, there exist a constant C > 0 and a small
compact neighborhood O of the top lid of Γaα, both depending only on a, b, α, β, r, L, ξ, q, n,
such that

∫
Γaα

|∇u(X)|q

|X −X∗|r
dX ≤ C

∫
Γbβ

|∇ξu(X)|q

|X −X∗|r
dX + C sup

X∈O
|u(X)|q, (2.151)

where ∇ξ is the directional derivative along ξ.

Proof. Performing a rotation and a translation, there is no loss of generality in assuming
that X∗ = 0 and ξ = en. In particular, ∇ξ = ∂n. First, using the Fundamental Theorem of
Calculus and interior estimates, we observe that for each point X = (x′, xn) ∈ Γaα and each
fixed index j ∈ {1, ..., n},

|(∂ju)(X)| =
∣∣∣(∂ju)(x′, a)−

∫ a

xn

(∂n∂ju)(x′, t) dt
∣∣∣

≤
∫ a

xn

|(∂j∂nu)(x′, t)| dt+ C sup
O
|u|, (2.152)

for some small compact neighborhood O of the top lid of Γaα. Using once again interior
estimates, we have for xn < t < a,

|(∂j∂nu)(x′, t)| ≤ C

t

(∫
−
Bλt(x′,t)

|(∂nu)(Y )|q dY
) 1
q
, (2.153)

where λ ∈ (0, 1) is chosen to be small enough that Bλt(x
′, t) ⊂ Γbβ if (x′, t) ∈ Γaα. Define

Dt := {Y = (y′, yn) ∈ Γbβ : |yn − t| < λt}, t > 0. (2.154)

Since Bλt(x
′, t) ⊂ Dt for every t ∈ (0, a) and every X = (x′, xn) ∈ Γaα, it follows that

|(∂j∂nu)(x′, t)| ≤ C t−(n+q)/qF (t)1/q, ∀ t ∈ (0, a), (2.155)

if X = (x′, xn) ∈ Γaα, where we have set

F (t) :=

∫
Dt

|(∂nu)(Y )|q dY, 0 < t < a. (2.156)
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Consider the spherical cap Sα := Sn−1∩{tX : X ∈ Γaα, t > 0}. Then, combining (2.152) and
(2.155) and taking into account the fact that (sω)n = sωn ≥ cs for some c = c(α) ∈ (0, 1),
we obtain from (2.152) and (2.155) that

|(∂ju)(sω)| ≤ C

∫ a

cs

t−(n+q)/qF (t)1/q dt+ C sup
O
|u|, (2.157)

uniformly for ω ∈ Sα and 0 < s < a. Applying Hardy’s inequality, we thus obtain

∫ a

0

|(∂ju)(sω)|q sn−1−r ds ≤ C

∫ a

0

t−1−rF (t) dt+ C sup
O
|u|q, (2.158)

uniformly for ω ∈ Sα. Let χt denote the characteristic function of Dt in Γbβ. Then by Fubini’s
Theorem,

∫ a

0

t−1−rF (t) dt =

∫ a

0

t−1−r
(∫

Dt

|(∂nu)(Y )|q dY
)
dt

=

∫
Γbβ

|(∂nu)(Y )|q
(∫ a

0

t−1−rχt(Y ) dt
)
dY

≤
∫

Γbβ

|(∂nu)(Y )|q
(∫ yn/(1−λ)

yn/(1+λ)

t−1−r dt
)
dY

≤ C

∫
Γbβ

|(∂nu)(Y )|q y−rn dY. (2.159)

Then using (2.158) and (2.159) and polar coordinates, we have

∫
Γaα

|(∂ju)(X)|q x−rn dX ≤
∫
Sα

∫ a

0

|(∂ju)(sω)|q sn−1−r ds dω

≤ C

∫
Γbβ

|(∂nu)(X)|q x−rn dX + C sup
O
|u|q. (2.160)

Since j ∈ {1, ..., n} was arbitrary, this finishes the proof of the lemma. �

Lemma 2.12. Let Ω be as in (2.4) and assume that v is harmonic in Ω. Then for every
p ∈ (0,∞) there exists a finite constant C = C(Ω, p) > 0 such that

‖M(∇v)‖Lp(∂Ω) ≤ C‖M(∇ηv)‖Lp(∂Ω). (2.161)
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Proof. There are two basic ingredients used in the proof. One is E. Stein’s Lemma 2.11. The
second one is B. Dahlberg’s equivalence

‖Mα(w)‖Lp(∂Ω) ≈ ‖Aα(w)‖Lp(∂Ω), (2.162)

valid for every 0 < p < ∞, uniformly for functions satisfying ∆w = 0 in Ω and normalized
such that w(0) = 0. Recall that the area-function A is given by

(Aαw)(X) :=

(∫
Γα(X)

|∇w(Y )|2

|X − Y |n−2
dY

)1/2

, X ∈ ∂Ω, (2.163)

where, given α > 0, Γα(X) is the nontangential approach region with vertex at X ∈ ∂Ω (cf.
(2.1)). For a suitable relatively compact subset O of Ω, we now estimate

Aα(∇v)(X)2 =

∫
Γα(X)

|∇∇v(Y )|2

|X − Y |n−2
dY ≤ C

∫
Γβ(X)

|∇X∇v(Y )|2

|X − Y |n−2
dY + C sup

O
|∇v|2

≤ C

∫
Γβ(X)

|∇η∇v(Y )|2

|X − Y |n−2
dY + C sup

O
|∇v|2

+C

∫
Γβ(X)

|X − Y |2|∇∇v(Y )|2

|X − Y |n−2
dY. (2.164)

The first inequality above is a consequence of Lemma 2.11 (with q = 2 and r = n− 2), while
the second inequality follows by using the generic estimate

|∇Xw(Y )| = |〈X, (∇w)(Y )〉| ≤ |(∇ηw)(Y )|+ |X − Y ||(∇w)(Y )| (2.165)

with w := ∇v. Going further, for a suitably small ε > 0, and α > 0, X ∈ ∂Ω, define

Γεα(X) :=
{
Y ∈ Ω : |X − Y | ≤ min{ε , (1 + α) dist (Y, ∂Ω)}

}
, (2.166)

i.e., the nontangential approach region with vertex at X ∈ ∂Ω, truncated at height ε. We
then majorize the last term in (2.164) by

Cε2

∫
Γεβ(X)

|∇∇v(Y )|2

|X − Y |n−2
dY + Cε

∫
Γβ(X)\Γεβ(X)

|∇∇v(Y )|2 dY

≤ Cε2Aβ(∇v)(X)2 + Cε sup
Oε
|v|2, (2.167)

by interior estimates, where Oε is a certain relatively compact subset of Ω. Using this and
(2.29), we obtain from (2.164) that, for every X ∈ ∂Ω,
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Aα(∇v)(X) ≤ CAβ(∇ηv)(X) + CεAβ(∇v)(X)

+CAβ(v)(X) + Cε sup
Oε
|v|, (2.168)

where C is independent of ε.
After this preamble, we invoke (2.162) and (2.168) in order to write

‖Mα(∇v)‖Lp(∂Ω) ≤ C‖Aα(∇v)‖Lp(∂Ω) + C|∇v(0)|

≤ C‖Aβ(∇ηv)‖Lp(∂Ω) + Cε‖Aβ(∇v)‖Lp(∂Ω)

+C‖Aβ(v)‖Lp(∂Ω) + Cε sup
Oε
|v|. (2.169)

By relying once more on (2.162) and recalling (2.99), the right-most expression above is
dominated by

C‖Mβ(∇ηv)‖Lp(∂Ω) + Cε‖Mβ(∇v)‖Lp(∂Ω) + C‖Mβ(v)‖Lp(∂Ω) + Cε sup
Oε
|v|

≤ C‖Mα(∇ηv)‖Lp(∂Ω) + Cε‖Mα(∇v)‖Lp(∂Ω) + Cε‖Mα(v)‖Lp(∂Ω). (2.170)

Utilizing this back in (2.169) and choosing ε > 0 sufficiently small so that the term with
coefficient Cε can be absorbed in the left-hand side, we obtain

‖Mα(∇v)‖Lp(∂Ω) ≤ C‖Mα(∇ηv)‖Lp(∂Ω) + C‖Mα(v)‖Lp(∂Ω). (2.171)

At this stage, there remains to eliminate the last term in (2.171). With this goal in mind,
and given the nature of the inequality (2.161), we may (and will) assume that v(0) = 0 to
begin with. Then for X ∈ ∂Ω and Y ∈ Γα(X),

v(Y ) =

∫ 1

0

(∇ηv)(tY )
dt

t
=

∫ ε

0

(∇ηv)(tY )
dt

t
+

∫ 1

ε

(∇ηv)(tY )
dt

t
, (2.172)

where ε > 0 is a small number, to be specified shortly. Hence,

|v(Y )| ≤ C

∫ ε

0

|(∇v)(tY )| dt+ Cε−1

∫ 1

ε

|(∇ηv)(tY )| dt

≤ CεMα(∇v)(X) + Cε−1Mα(∇ηv)(X), (2.173)

and thus

Mα(v)(X) ≤ CεMα(∇v)(X) + Cε−1Mα(∇ηv)(X), (2.174)

for every X ∈ ∂Ω. Plugging this back in (2.171) and arranging that the term with small
coefficient can be absorbed in the left-hand side, we finally arrive at (2.161). �
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2.6 A singular integral operator related to the bi-Laplacian

Let Ω be as in (2.4). For f ∈ Lp(∂Ω), 1 < p <∞, set

u(X) := lim
t↗1

∫
Ω

Γ(X − Y )
[
2(n− 2)Df(tY ) + 2(∇ηDf)(tY )

]
dY, X ∈ Rn, (2.175)

where D is as in (2.118), and define the linear assignment

T : f 7→ (∇ηu)
∣∣∣
∂Ω
. (2.176)

To better understand the nature of this mapping, we shall derive an alternative representa-
tion, more amenable to the scope of the Calderón-Zygmund theory.

Before doing so, we make an observation of independent interest. Specifically,

u is as in (2.175) =⇒ u harmonic in Ω− = Rn \ Ω̄. (2.177)

Indeed, this is going to be clear from (2.175) as soon as we show (see below) that the limit
exists uniformly for X in compact subsets of Ω−.

Turning now to the main task at hand, we first claim that for each fixed X ∈ Ω there
exists C(X) > 0 with the property that

sup
t∈(1/2,1)

∣∣∣∣∫
Ω

Γ(X − Y )
[
2(n− 2)Df(tY ) + 2(∇ηDf)(tY )

]
dY

∣∣∣∣ ≤ C(X)‖f‖Lp(∂Ω). (2.178)

To justify this, decompose the domain of integration in
∫

Ω
Γ(X − Y )Df(tY ) dY into two

pieces, Ω \ B(X, r) and B(X, r), where r := dist (X, ∂Ω)/2. Note that for Y ∈ Ω \ B(X, r),
the function Γ(X − Y ) is bounded by C(X), whereas

∫
Ω

|Df(tY )| dY = t−n
∫
tΩ

|Df(Z)| dZ ≤ C‖Df‖Lnp/(n−1)(Ω)

≤ C‖M(Df)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω). (2.179)

Also, straightforward estimates give supt∈(1/2,1) supY ∈B(X,r) |Df(tY )| ≤ C(X)‖f‖Lp(∂Ω), and
the L1-norm of Γ(X − ·) on B(X, r) is ≤ C(X). Altogether, the above reasoning shows that
the contribution from

∫
Ω

Γ(X − Y )Df)(tY ) dY in (2.178) is of the right order.
Regarding the contribution from

∫
Ω

Γ(X − Y )(∇ηDf)(tY ) dY , we integrate ∇η by parts

to re-write this as
∫

Ω
∂Yj

[
yjΓ(X − Y )

]
Df(tY ) dY plus

∫
∂Ω

Γ(X − Y )yjνj(Y )Df)(tY ) dσ(Y ).

Then the first term is treated as above, while the second one is ≤ C(X)‖M(Df)‖L1(∂Ω),
uniformly in t. From this, (2.178) follows. We wish to point out that a reasoning based on
similar ideas, and the identity (2.120), proves that
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u is as in (2.175) with f ∈ Lp1(∂Ω) (2.180)

=⇒ u(X) =

∫
Ω

Γ(X − Y )
[
2(n− 2)Df(Y ) + 2(∇ηDf)(Y )

]
dY, X ∈ Rn.

Having shown that the limit in (2.175) exists if f ∈ Lp1(∂Ω), 1 < p <∞, our next goal is
to find a suitable representation for it. To this end, let B be as in (2.143), and recall (2.144).
Thus, for each fixed X ∈ Ω and t ∈ (0, 1),

∫
Ω

Γ(X − Y )(∇ηDf)(tY ) dY =

∫
Ω

∂Yk ∂
Y
k

[
B(X − Y )

]
∇η[Df(tY )] dY. (2.181)

Making use of (2.147), for each fixed X ∈ Ω we have

lim
t↗1

∫
Ω

Γ(X − Y )∇η[Df(tY )] dY

= lim
t↗1

∫
Ω

∇Y
η ∂

Y
k

[
B(X − Y )

]
∂k[Df(tY )] dY (2.182)

+(n− 1) lim
t↗1

∫
Ω

∂Yk

[
B(X − Y )

]
∂k[Df(tY )] dY

+

∫
∂Ω

∂τjk(Y )

[
yj∂

Y
k [B(X − Y )]

]
(1

2
I +K)f(Y ) dσ(Y )

where, in the last boundary integral above, we have integrated by parts on ∂Ω and used the
fact that (Df)(tY ) → (1

2
I + K)f(Y ) as t ↗ 1 as functions in Lp(∂Ω). Using the fact that

∂Yτjkyj = (1− n)νk(Y ), this integral can be further transformed into

∫
∂Ω

yj∂τjk(Y )∂
Y
k

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y )

−(n− 1)

∫
∂Ω

∂ν(Y )

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y ). (2.183)

As for the first two terms in the right-hand side of (2.182), we use (2.29) in order to write
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lim
t↗1

∫
Ω

∇Y
η ∂

Y
k

[
B(X − Y )

]
∂k[Df(tY )] dY

+(n− 1) lim
t↗1

∫
Ω

∂Yk

[
B(X − Y )

]
∂k[Df(tY )] dY

= lim
t↗1

∫
Ω

∂Yk ∇Y
η

[
B(X − Y )

]
∂k[Df(tY )] dY

+(n− 2) lim
t↗1

∫
Ω

∂Yk

[
B(X − Y )

]
∂k[Df(tY )] dY

=: I + II. (2.184)

Assume that f ∈ Lp1(∂Ω). This allows us to integrate ∂Yk by parts in II and use (2.122) to
obtain

II = (n− 2) lim
t↗1

∫
∂Ω

B(X − Y )∂ν(Y )[Df(tY )] dσ(Y )

=
n− 2

2

∫
∂Ω

B(X − Y )∂τjkS(∂τjkf)(Y ) dσ(Y ) (2.185)

= −n− 2

2

∫
∂Ω

∂τjk(Y )

[
B(X − Y )

]
S(∂τjkf)(Y ) dσ(Y ).

We now consider I in (2.184). Integrate ∂Yk by parts and, assuming that f ∈ Lp1(∂Ω), use
(2.122) to transform it as

I = lim
t↗1

∫
Ω

∂Yk ∇Y
η

[
B(X − Y )

]
∂k[Df(tY )] dY

= −1

2

∫
∂Ω

∂τjk(Y )∇Y
η

[
B(X − Y )

]
S(∂τjkf)(Y ) dσ(Y ). (2.186)

Next, we note that

lim
t↗1

∫
Ω

Γ(X − Y )Df(tY ) dY = lim
t↗1

∫
Ω

∆Y

[
B(X − Y )

]
Df(tY ) dY (2.187)

=

∫
∂Ω

∂ν(Y )

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y )

−
∫
∂Ω

B(X − Y )∂νDf(Y ) dσ(Y ) =: III + IV

and, much as before,
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IV =
1

2

∫
∂Ω

∂τjk(Y )

[
B(X − Y )

]
S(∂τjkf)(Y ) dσ(Y ). (2.188)

Consequently, for each f ∈ Lp1(∂Ω) and X ∈ Ω, we have

lim
t↗1

∫
Ω

Γ(X − Y )Df(tY ) dY

=

∫
∂Ω

∂ν(Y )

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y )

+
1

2

∫
∂Ω

∂τjk(Y )

[
B(X − Y )

]
S(∂τjkf)(Y ) dσ(Y ). (2.189)

After this preamble, it is straightforward to establish the following.

Lemma 2.13. If Ω is as in (2.4) and f ∈ Lp(∂Ω) with 1 < p <∞, then

u(X) := lim
t↗1

∫
Ω

Γ(X − Y )
{

2(n− 2)Df(tY ) + 2(∇ηDf)(tY )
}
dY

= 2

∫
∂Ω

yj∂τjk(Y )∂
Y
k

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y )

−
∫
∂Ω

∂τjk(Y )∇Y
η

[
B(X − Y )

]
S(∂τjkf)(Y ) dσ(Y ) (2.190)

−2

∫
∂Ω

∂ν(Y )

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y ), X 6∈ ∂Ω.

Proof. This is an immediate consequence of (2.178), the existence of the limit of u in (2.175)
when f ∈ Lp1(∂Ω), plus its corresponding formula (implicit above), and a density argument.
That the latter works is guaranteed by the fact that the boundary integrals in (2.190) can
be estimated by C(X)‖f‖Lp(∂Ω). �

As a corollary of this integral representation we have:

Proposition 2.14. Let Ω be as in (2.4). The following properties hold:

(1) ‖M(∇u)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), 1 < p <∞;

(2) ‖M(∇∇u)‖Lp(∂Ω) ≤ C‖f‖h1,p(∂Ω),
n−1
n
< p <∞;

(3) u
∣∣∣
∂Ω+

= u
∣∣∣
∂Ω−

and ∇u
∣∣∣
∂Ω+

= ∇u
∣∣∣
∂Ω−

;

(4) The mapping T : f 7→ (∇ηu)
∣∣∣
∂Ω

is well defined and bounded on Lp(∂Ω) for 1 < p <∞,

on Lp1(∂Ω) for 1 < p <∞, as well as on h1,p
at (∂Ω) for n−1

n
< p ≤ 1;
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(5) The following representation of T in terms of boundary integral operators is valid:

Tf(X) = −2p.v.

∫
∂Ω

xiyj∂τjk(Y )∂
Y
i ∂

Y
k

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y )

+p.v.

∫
∂Ω

xi∂τjk(Y )∇Y
η ∂

Y
i

[
B(X − Y )

]
S(∂τjkf)(Y ) dσ(Y ) (2.191)

+2

∫
∂Ω

xi∂ν(Y )∂
Y
i

[
B(X − Y )

](
1
2
I +K

)
f(Y ) dσ(Y ), X ∈ ∂Ω.

Proof. The proof of (1) follows from the fact that ∇3B is of Calderón-Zygmund type, while
(2) is due to the presence of ∇τ , i.e., the integral kernel of the top singular terms is of the
form ∂τ∇2B. �

Next we take up the task of finding a suitable representation for T ∗, the formal adjoint
of T in (2.175)-(2.176).

Proposition 2.15. Let Ω be as in (2.4). Then for every f ∈ Lp(∂Ω), with 1 < p < ∞,
there holds

T ∗f(X) = −2
(

1
2
I +K∗

)Z(
zj∂

Z
τjk

∫
∂Ω

∂Zi ∂
Z
k

[
B(Z − Y )

]
yif(Y ) dσ(Y )

)
(X)

−∂τjkSZ
(
zr∂

Z
τjk

∫
∂Ω

∂Zr ∂
Z
i

[
B(Z − Y )

]
yif(Y ) dσ(Y )

)
(X) (2.192)

+2
(

1
2
I +K∗

)Z(∫
∂Ω

∂ν(Z)∂
Z
i

[
B(Z − Y )

]
yif(Y ) dσ(Y )

)
(X),

with the following convention in place: if T is a singular integral operator with kernel
k(X, Y ), then

T Z(g(Z))(X) :=

∫
∂Ω

k(X,Z)g(Z) dσ(Z). (2.193)

Proof. This follows from (2.191) and straightforward algebraic manipulations. �

Our next result is a direct consequence of Proposition 2.15 and Calderón-Zygmund theory
for singular integral operators on Lipschitz surfaces.

Lemma 2.16. Let Ω be as in (2.4). Then the operator T ∗ from (2.192) induces a mapping

T ∗ : hpat(∂Ω)→ hpat(∂Ω) (2.194)

which is well-defined, linear and bounded for each p ∈ (n−1
n
, 1].
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Recall (2.140). With this piece of notation we have

Tf := (∇ηu)
∣∣∣
∂Ω

where u := Γ
(

2(n− 2)Df + 2∇ηDf
)

in Ω, (2.195)

where u is understood in the sense of (2.175). We remind the reader that ∂−ν stands for the
normal derivative computed by approaching the boundary from inside Ω−.

Lemma 2.17. Assume that Ω is as in (2.4). Then for every g ∈ Lp(∂Ω), 1 < p <∞, there
holds

(T ∗g)(X) = 2∂−ν(X)〈X,∇Γ(divS(gη))(X)〉, X ∈ ∂Ω. (2.196)

Proof. Fix f ∈ Lp′(∂Ω), 1/p+ 1/p′ = 1. Using (2.195) we may write

∫
∂Ω

fT ∗g dσ =

∫
∂Ω

(Tf)g dσ (2.197)

=

∫
∂Ω

(
lim
t↗1

∫
Ω

〈X, (∇Γ)(X − Y )〉
{

2(n− 2)Df(Y ) + 2〈Y,∇Df(tY )〉
}
dY
)
g(X) dσ(X)

= lim
t↗1

∫
Ω

{
2(n− 2)Df(Y ) + 2〈Y,∇Df(tY )〉

}(∫
∂Ω

〈X, (∇Γ)(X − Y )〉g(X) dσ(X)
)
dY

= lim
t↗1

∫
Ω

{
2(n− 2)Df(Y ) + 2〈Y,∇Df(tY )〉

}
divS(gη)(Y )dY

= lim
t↗1

∫
Ω

(∫
∂Ω

{
2(n− 2)∂ν(Y )[Γ(X − Y )] + 2〈X, ∂ν(Y )[(∇Γ)(tX − Y )]〉

}
f(Y ) dσ(Y )

)
×

× divS(gη)(X) dX

=

∫
∂Ω

f(Y )
(

lim
t↗1

∫
Ω

{
2(n− 2)∂ν(Y )[Γ(X − Y )] + 2〈X, ∂ν(Y )[(∇Γ)(tX − Y )]〉

}
×

× divS(gη)(X) dX
)
dσ(Y ).

Thus, since f was arbitrary,

(T ∗g)(X) = 2(n− 2)∂ν(X)Γ(divS(gη))(X)

−2 lim
t↗1

∂ν(X)

∫
Ω

〈Y, (∇Γ)(X − tY )〉 divS(gη)(Y ) dY. (2.198)

Now we write

〈Y, (∇Γ)(X − tY )〉 = t−1(n− 2)Γ(X − tY ) + t−1〈X, (∇Γ)(X − tY )〉 (2.199)
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and note that

(∇Γ)(X − tY ) = (∇Γ)(X/t− Y ) · t1−n −→ (∇Γ)(X − Y ) as t↗ 1, (2.200)

and X/t → X as t ↗ 1, nontangentially from the exterior of Ω. Using these observations
back in (2.198) we may then conclude that (2.196) holds. �

Recall now the operators R, R∗ and R from (2.112), (2.113) and (2) in Lemma 2.6. Given
two functions f ∈ L2

1(∂Ω) and g ∈ L2(∂Ω), set

u(X) :=

∫
Ω

Γ(X − Y )
[
2(n− 2)Df(Y ) + 2∇ηDf(Y )

]
dY, (2.201)

and compute

∫
∂Ω

g Tf dσ =

∫
∂Ω

g(X)〈X,∇u(X)〉 dσ(X) (2.202)

=

∫
∂Ω

g(X)
(∫

Ω

〈X, (∇Γ)(X − Y )〉
[
2(n− 2)Df(Y ) + 2∇ηDf(Y )

]
dY
)
dσ(X)

=

∫
Ω

(∫
∂Ω

〈X, (∇Γ)(X − Y )〉g(X) dσ(X)
)[

2(n− 2)Df(Y ) + 2∇ηDf(Y )
]
dY

=

∫
Ω

(Rg)(X)
[
2(n− 2)Df(X) + 2∇ηDf(X)

]
dX,

i.e.,

∫
∂Ω

g Tf dσ =

∫
Ω

Rg
{

2(n− 2)Df + 2∇ηDf
}
dX. (2.203)

To proceed, recall the Poisson integral operator (2.125) and, for each f ∈ L2(∂Ω) set

Q̃f(X) :=

∫ 1

0

{(n− 2)Pf(tX) + 〈tX,∇Pf(tX)〉}t
n
2
−1dt, X ∈ Ω. (2.204)

Also, define

Qf := (Q̃f)
∣∣∣
∂Ω
. (2.205)

We now record a useful result, due to G. Verchota [57].
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Lemma 2.18. Let Ω ⊂ Rn, n ≥ 3, be a Lipschitz, starlike domain with respect to the origin.
Then

Q : L2(∂Ω)→ L2(∂Ω) isomorphically, (2.206)

∆Q̃f = 0 in Ω, (2.207)

‖M(Q̃f)‖L2(∂Ω) ≤ C‖f‖L2(∂Ω), (2.208)

and

n Q̃f + 2∇ηQ̃f = 2(n− 2)Pf + 2∇ηPf. (2.209)

After this preamble, we now return to (2.203). Then

2(n− 2)Df + 2∇ηDf = 2(n− 2)P ◦ (1
2
I +K)f + 2∇η

[
P ◦ (1

2
I +K)

]
f

= nQ̃
(
(1

2
I +K)f

)
+ 2∇ηQ̃

(
(1

2
I +K)f

)
, (2.210)

where for the last equality in (2.210) we have applied Lemma 2.18. Further specialize matters
to the case when

g = −
(

1
2
〈η, ν〉I +R∗

)−1
Q
(

1
2
I +K

)
f. (2.211)

This ensures that Rg
∣∣∣
∂Ω

=
[
Q̃
(
(1

2
I+K)f

)]∣∣∣
∂Ω

and since Rg, Q̃((1
2
I+K)f) are harmonic

in Ω and satisfy M(Rg), M(Q̃(1
2
I + K)f) ∈ L2(∂Ω), by the uniqueness in the L2-Dirichlet

boundary value problem for the Laplacian in the Lipschitz Ω we obtain

Rg = Q̃
(
(1

2
I +K)f

)
in Ω. (2.212)

Combining (2.203), (2.210), (2.211), and (2.212) we obtain

∫
∂Ω

gTf dσ =

∫
Ω

Q̃
(
(1

2
I +K)f

){
nQ̃
(
(1

2
I +K)f

)
+ 2∇ηQ̃

(
(1

2
I +K)f

)}
dX

=

∫
Ω

div
{[
Q̃
(
(1

2
I +K)f

)]2

η
}
dX. (2.213)

Hence, upon observing that, in general
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div (u2η) = nu2 + 2u∇ηu, (2.214)

the Divergence Theorem gives

∫
∂Ω

gTf dσ =

∫
∂Ω

〈η, ν〉
∣∣∣Q(1

2
I +K)f

∣∣∣2 dσ, (2.215)

if g is as in (2.211). The computation leading up to (2.215) is most easily justified by
assuming that f ∈ L2

1(∂Ω). However, a standard density argument then shows that (2.215)
is valid for every f ∈ L2(∂Ω)) if, once again, g is as in (2.211).

Since 〈η, ν〉 ≥ κ > 0 a.e. on ∂Ω and both Q and 1
2
I + K are invertible on L2(∂Ω), we

obtain from (2.215) that

∫
∂Ω

Af Tf dσ ≥ C

∫
∂Ω

|f |2 dσ, ∀ f ∈ L2(∂Ω), (2.216)

where

A := −
(

1
2
〈η, ν〉I +R∗

)−1 ◦Q ◦
(

1
2
I +K

)
(2.217)

is an invertible operator on L2(∂Ω). Estimate (2.216) implies that A∗ ◦ T is an accretive
operator on L2(∂Ω) and, hence, is invertible. Since A∗ is invertible on L2(∂Ω), we arrive at
the conclusion that

T : L2(∂Ω) −→ L2(∂Ω) isomorphically. (2.218)

Known perturbation techniques (cf. the discussion in [23]) then yield the following.

Theorem 2.19. In the context of (2.4), there exists ε = ε(Ω) > 0 with the property that

T : Lp(∂Ω) −→ Lp(∂Ω),

T ∗ : Lp(∂Ω) −→ Lp(∂Ω),
(2.219)

isomorphically whenever 2− ε < p < 2 + ε.

3 The Dirichlet and regularity problems

3.1 The Dirichlet problem for |p− 2| < ε

For Ω as in (2.4) and 1 < p <∞, consider the following problem
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
∆2u = 0 in Ω,

u
∣∣∣
∂Ω

= g0 on ∂Ω,

∂νu
∣∣∣
∂Ω

= g1 on ∂Ω,

(3.1)

where a solution is sought in the class of functions satisfying

M(∇u) ∈ Lp(∂Ω). (3.2)

We have:

Theorem 3.1. For every domain Ω as in (2.4) there exists ε = ε(Ω) > 0 such that if
2 − ε < p < 2 + ε then the boundary value problem (3.1)-(3.2) is uniquely solvable for any
g0 ∈ Lp1(∂Ω) and g1 ∈ Lp(∂Ω). Furthermore, the solution can be represented in the form

u = Dg0 − Sg1 − Γ
(

2(n− 2)Df + 2∇ηDf
)

in Ω, (3.3)

where the solid integral is to be understood in the sense of (2.175) and

f := T−1
(
∇η

[
Dg0 − Sg1

]∣∣∣
∂Ω−

)
. (3.4)

Moreover,

‖u‖Bp,2
1+ 1

p
(Ω) ≤ C‖g0‖Lp1(∂Ω) + C‖g1‖Lp(∂Ω) if 2− ε < p ≤ 2, (3.5)

‖u‖F p,q
1+ 1

p
(Ω) ≤ C‖g0‖Lp1(∂Ω) + C‖g1‖Lp(∂Ω) if 2 ≤ p < 2 + ε, 0 < q <∞. (3.6)

Proof. Let f be such that

Tf = (∇ηh)
∣∣∣
∂Ω−

, (3.7)

where

h := Dg0 − Sg1. (3.8)

Also, set
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w := Γ
(

2(n− 2)Df + 2∇ηDf
)
, (3.9)

with the convention that this is understood as in (2.175).
Then ∇ηh and ∇ηw are harmonic in Ω− with their maximal functions in L2(∂Ω). Having

the same boundary trace implies, due to the uniqueness in the Lp-Dirichlet problem with p
near 2, that

∇ηh = ∇ηw in Ω−. (3.10)

From this and (2.33) we obtain that h = w in Ω−, modulo constants. Since they both decay
at infinity we have, in fact, h = w in Ω−. Thus,

w
∣∣∣
∂Ω+

= w
∣∣∣
∂Ω−

= h
∣∣∣
∂Ω−

+C = (−1
2
I +K)g0 − Sg1, (3.11)

and

∂νw
∣∣∣
∂Ω+

= ∂νw
∣∣∣
∂Ω−

= ∂−ν h = ∂νDg0 − ∂−ν Sg1. (3.12)

Therefore, the function u := h − w solves the boundary value problem (3.1). Furthermore,
by (1) of Proposition 2.14, (3.2) holds. Uniqueness is proved as in [43].

Finally, consider (3.5)-(3.6) for u as in (3.3), with f ∈ Lp(∂Ω), satisfying ‖f‖Lp(∂Ω) ≤
C‖g0‖Lp1(∂Ω)+C‖g1‖Lp(∂Ω). The claim we make is that u ∈ Bp,p∨2

1+1/p(Ω), plus a natural estimate,

where we set p ∨ 2 := max{p, 2}. Given that u ∈ Ker ∆2, the estimates (3.5)-(3.6) will then
follow from this claim and Theorem 4.16.

To prove that u ∈ Bp,p∨2
1+1/p(Ω), we first note that the piece corresponding to the Newtonian

potential is of the right order, by (2.190) and Proposition 4.23. The latter result also gives
that Sg1 ∈ Bp,p∨2

1+1/p(Ω) and Dg0 ∈ Bp,p∨2
1+1/p(Ω) (for the double layer, (2.120) and (4.93) are also

used). �

We complement Theorem 3.1 with the following remarks.

Remark 1. Given an arbitrary bounded Lipschitz domain Ω ⊂ Rn, n ≥ 3, it is possible to
show that the problem (3.1)-(3.2) has a unique solution whenever 2− ε < p < 2 + ε, where
ε = ε(Ω) > 0. This can be done using the technique of “wiggling” star-shaped Lipschitz
domains near the boundary of Ω, and invoking Theorem 3.1. See § 3 in [56] and the discussion
on pp. 126-127 in [13].

Remark 2. The exterior version of the problem (3.1)-(3.2) is also well-posed for p near 2.
In this scenario, the decay condition (2.108) should be also imposed.

That this is indeed the case can be seen from Theorem 3.1, coupled with our results in
§ 2.4; cf. Propositions 2.3, 2.4, 2.5 in particular.
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Remark 3. In the context of Theorem 3.1, one can use the well-posedness result in order
to show that

∫
Ω

δ(X)|∇∇u(X)|2 dX ≤ C‖g0‖L2
1(∂Ω) + C‖g1‖L2(∂Ω). (3.13)

Indeed, (3.13) follows from (3.5) with p = 2 and Theorem 4.16 (cf., also (4.57)). As a
corollary, there exists a finite constant C = C(Ω) > 0 such that for any biharmonic function
u in Ω there holds

‖A(∇u)‖L2(∂Ω) ≤ C‖M(∇u)‖L2(∂Ω), (3.14)

where the area-functionA is as in (2.163). Having established (3.14), a real variable argument
(as in the last section of [12]) allows one to then conclude that for each 0 < p < ∞ there
exists C = C(Ω, p) > 0 such that

‖A(∇u)‖Lp(∂Ω) ≤ C‖M(∇u)‖Lp(∂Ω), (3.15)

uniformly for u biharmonic in Ω. This has first been established in [42], via good-λ inequal-
ities. See also [12] for a more general setting.

Remark 4. If, in addition of being a bounded Lipschitz domain in Rn, Ω has the property
that

ν ∈ vmo (∂Ω), (3.16)

then the problem (3.1)-(3.2) is well-posed for every p ∈ (1,∞). In particular, this is the case
if ∂Ω is a compact surface locally given by the graph of a Lipschitz function whose gradient
lies in Sarason’s space VMO.

The above statement extends a similar result of G. Verchota, proved in [56], for C1 do-
mains. The general outline of the proof of our claim is the same as in [56] in which the
compactness results from [14] are substituted by those proved in [20].

3.2 Possible formulations of the regularity problem

In this subsection we study a variant of (3.1), designed so that data exhibiting higher order
smoothness can be prescribed. This is commonly referred to as the regularity problem.

One of the most studied boundary value problems for the bi-Laplacian in a domain Ω
reads

(B)


∆2u = 0 in Ω,

u
∣∣∣
∂Ω

= F on ∂Ω,

∂νu
∣∣∣
∂Ω

= G on ∂Ω.

(3.17)
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For various purposes, it is convenient to rephrase (3.17) in a way which avoids the appearance
of the unit normal in the formulation of the boundary conditions. Such a version reads

(B′)


∆2u = 0 in Ω,

u
∣∣∣
∂Ω

= f0 on ∂Ω,

(∂ju)
∣∣∣
∂Ω

= fj on ∂Ω, 1 ≤ j ≤ n,

(3.18)

where, necessarily, the family

ḟ := (f0, f1, . . . , fn) satisfies the compatibility conditions in (2.21). (3.19)

Proposition 3.2. The boundary value problem (B) is uniquely solvable if and only if (B′)
is uniquely solvable.

Proof. Suppose that (B) is solvable and that ḟ = (f0, f1, . . . , fn) is a given Whitney array
(i.e, (2.21) holds). If we set

F := f0 and G := νjfj, (3.20)

then the solution u of (B) for this boundary data actually solves (B′) with data (f0, f1, . . . , fn).
Indeed, for every j,

∂ju = νk(νk∂j − νj∂k)u+ νj∂νu = νk(∂τkjF ) + νjG (3.21)

= νk∂τkjf0 + νjνkfk = νk(νkfj − νjfk) + νjνkfk = fj.

Conversely, suppose that a solution for (B′) exists and let F and G be given. We then
set

f0 := F and fj := νjG+ νk∂τkjF for 1 ≤ j ≤ n. (3.22)

Then (f0, f1, . . . , fn) is a Whitney array since for every 1 ≤ j, k ≤ n we have

νjfk − νkfj = νjνa∂τakF − νkνb∂τbjF (3.23)

= [νjνa(νa∂k − νk∂a)− νkνb(νb∂j − νj∂b)]F = ∂τjkF = ∂τjkf0.

Moreover, if u solves (B′) with data (f0, f1, . . . , fn) constructed from F , G as in (3.22) then

u
∣∣∣
∂Ω

= f0 = F and
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∂νu = νj(∂ju)
∣∣∣
∂Ω

= νjfj = νj(νjG+ νk∂τkjF ) = G. (3.24)

Finally, the fact that each of the problems (B), (B′) enjoys uniqueness if the other does,
is implicit in what we have proved so far. �

Remark. It is implicit in the above considerations that the mappings

P (ḟ) := (f0, νjfj) if ḟ = (f0, f1, ..., fn), is a Whitney array, (3.25)

and Q(F,G) := ḟ , where ḟ :=
(
F , (νjG+ νk∂τkjF )1≤j≤n

)
(3.26)

are inverse to one another. Although not of crucial importance here, we whish to mention
that

P : WA
(
Lp(∂Ω)

)
−→ Lp1(∂Ω)⊕ Lp(∂Ω),

Q : Lp1(∂Ω)⊕ Lp(∂Ω) −→ WA
(
Lp(∂Ω)

)
,

(3.27)

are isomorphism, for each p ∈ (1,∞).

Proceeding further, consider the following “nonstandard” version of the regularity prob-
lem:

(B′′)



∆2u = 0 in Ω,

ηj
|η|
∂ju = g0 on ∂Ω,

|η|n−3∂τjk

( ηk
|η|n−2

∂ju
)

= g1 on ∂Ω.

(3.28)

For further reference, let us note here that

|η|n−3∂τjk

( ηk
|η|n−2

∂ju
)

= |η|−1
[
∂ν∇η − 〈ν, η〉∆ + ∂ν

]
u+ (n− 2)|η|−3〈ν, η〉∇ηu. (3.29)

3.3 First look at the nonstandard version

In this subsection we explore the extent to which (3.28) is equivalent to (3.18). This is
accomplished in a series of propositions, starting with:

Proposition 3.3. Suppose that Ω is as in (2.4), u is a real-valued function defined in Ω̄,
and ḟ = (f0, f1, ..., fn) is a Whitney array on ∂Ω such that

ηj(∂ju− fj) = 0 on ∂Ω. (3.30)
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Then, for X ∈ ∂Ω,

∂τjk

( ηk
|η|n−2

(∂ju− fj)
)

(X) (3.31)

=
−1

ϕ(X/|X|)n−2
√
|(∇tanϕ)(X/|X|)|2 + |ϕ(X/|X|)|2

[∆Sn−1(ũ− f̃0)](X/|X|),

where ũ, f̃0 are the extensions of u|∂Ω and f0, respectively, to Rn \ {0}, as defined in (2.13).

Proof. Fix ψ ∈ C∞0 (Rn), and set

ψ̃(X) := ψ
(
ϕ(X/|X|)X/|X|

)
, for each X ∈ Rn \ {0}. (3.32)

An integration by parts gives

∫
∂Ω

∂τjk

[ ηk
|η|n−2

(∂ju− fj)
]
ψ dσ = −

∫
∂Ω

ηk
|η|n−2

(∂ju− fj)(∂τjkψ) dσ

= −
∫
∂Ω

ηk
|η|n−2

(∂ju− fj)(νj∂kψ − νk∂jψ) dσ. (3.33)

Use now (2.8)-(2.9) to change variables from ∂Ω to Sn−1:

∫
∂Ω

∂τjk

[ ηk
|η|n−2

(∂ju− fj)
]
ψ dσ = −

∫
Sn−1

ωkϕ(ω)
[
(∂ju)(ϕ(ω)ω)− fj(ϕ(ω)ω)

]
×

×
{[
ϕ(ω)ωj − (∇tanϕ)j(ω)

]
(∂kψ)(ϕ(ω)ω) (3.34)

−
[
ϕ(ω)ωk − (∇tanϕ)k(ω)

]
(∂jψ)(ϕ(ω)ω)

}
dω.

Now, observe that ωk(∇tanϕ)k(ω) = 0 on Sn−1. Also, (3.30) gives

ωj

(
(∂ju)(ϕ(ω)ω)− fj(ϕ(ω)ω)

)
= 0, ω ∈ Sn−1. (3.35)

Using these, the right-hand side of (3.34) reduces to

∫
Sn−1

ϕ(ω)
[
(∂ju)(ϕ(ω)ω)− fj(ϕ(ω)ω)

]
× (3.36)

×
{

(∇tanϕ)j(ω)ωk(∂kψ)(ϕ(ω)ω) + ϕ(ω)(∂jψ)(ϕ(ω)ω)
}
dω.
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Next, (3.32) and the first equality in (2.15) give

(∂jψ)(ϕ(ω)ω) = (∂jψ̃)(ϕ(ω)ω) + ϕ(ω)−1(ϕ(ω)ωj − (∇tanϕ)j(ω))ωk(∂kψ)(ϕ(ω)ω). (3.37)

Keeping this, as well as (3.35), in mind, (3.36) further simplifies to

∫
Sn−1

ϕ(ω)2
[
(∂ju)(ϕ(ω)ω)− fj(ϕ(ω)ω)

]
(∂jψ̃)(ϕ(ω)ω) dω. (3.38)

Formulas (2.15) and (2.23) also ensure that

(∂ju)(ϕ(ω)ω) = (∂jũ)(ϕ(ω)ω) +
νj(ϕ(ω)ω)

〈ω, ν(ϕ(ω)ω)〉
ωk(∂ku)(ϕ(ω)ω), (3.39)

fj(ϕ(ω)ω) = (∂j f̃0)(ϕ(ω)ω) +
νj(ϕ(ω)ω)

〈ω, ν(ϕ(ω)ω)〉
ωkfk(ϕ(ω)ω). (3.40)

Subtracting (3.40) from (3.39) and recalling (3.30), we obtain

(∂ju)(ϕ(ω)ω)− fj(ϕ(ω)ω) = ∂j(ũ− f̃0)(ϕ(ω)ω), ω ∈ Sn−1. (3.41)

Note that, by homogeneity, ∂j(ũ− f̃0)(ϕ(ω)ω),= ϕ(ω)−1∂j(ũ− f̃0)(ω) and (∂jψ̃)(ϕ(ω)ω) =

ϕ(ω)−1(∂jψ̃)(ω). This and a reference to (2.25) then allow us to re-write (3.38) as

∫
Sn−1

∂j(ũ− f̃0)(ω)(∂jψ̃)(ω) dω = −
∫

Sn−1

∆Sn−1(ũ− f̃0)(ω)ψ̃(ω) dω. (3.42)

Recalling that this expression stands for the right-hand side of (3.34), yields

∫
∂Ω

∂τjk

[ ηk
|η|n−2

(∂ju− fj)
]
ψ dσ = −

∫
Sn−1

∆Sn−1(ũ− f̃0)(ω) ψ̃(ω) dω (3.43)

= −
∫
∂Ω

[∆Sn−1(ũ− f̃0)](X/|X|)
ϕ(X/|X|)n−2

√
|(∇tanϕ)(X/|X|)|2 + |ϕ(X/|X|)|2

ψ(X) dσ(X),

by (2.9). Since ψ is arbitrary, (3.31) follows. �

Our next result explains how one can treat (3.18) by solving (3.28) for data appropriately
tailored out of the original data for (3.18).
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Proposition 3.4. Assume that u solves (3.28) when the data has the following special form:

g0 := |η|−1ηjfj, g1 := |η|n−3∂τjk(ηk|η|2−nfj), (3.44)

with f1, ..., fn the last n components of a Whitney array ḟ = (f0, f1, ..., fn). Then

u = f0 + C on ∂Ω, for some constant C, (3.45)

and

∂ju = fj on ∂Ω, for each j ∈ {1, ..., n}. (3.46)

In particular, u− C solves (3.18).

Proof. The special format of the data in (3.44) ensures that

ηj(∂ju− fj) = 0 and ∂τjk

( ηk
|η|n−2

(∂ju− fj)
)

= 0 on ∂Ω. (3.47)

Thus, (3.45) follows by invoking Proposition 3.3 and (2.27). With this in hand, for an
arbitrary j ∈ {1, ..., n}, we now compute

(∂ju)
∣∣∣
∂Ω

=
(
∂ju−

νj
〈ν, η〉

〈η,∇u〉
)

+
νj
〈ν, η〉

∇ηu =: E1 + E2. (3.48)

Now,

〈η, ν〉E1 = (ηkνk∂j − νjηk∂k)u = ηk(∂τkju)

= ηk(∂τkjf0) = ηk(νkfj − νjfk) = 〈η, ν〉fj − νjηkfk, (3.49)

by (3.45) and (2.21). In addition, ∇ηu = ηkfk by the first formula in (3.47), so that

〈η, ν〉E2 = νjηkfk. (3.50)

Combining (3.48) with (3.49)-(3.50) now gives (∂ju)|∂Ω = fj, for every j ∈ {1, ..., n}. �

Compared to Proposition 3.4, our last result in this subsection goes in the opposite
direction. Somewhat more specifically, here we explain how the solution of (3.28) with
g0 = 0 can be regarded as the solution of (3.18) for a certain type of data.
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Proposition 3.5. Assume that u solves (3.28) with

g0 ≡ 0 and g1 such that

∫
∂Ω

|X|3−ng1(X) dσ(X) = 0. (3.51)

For ω ∈ Sn−1 define

g(ω) := −g1(ϕ(ω)ω)ϕ(ω)
√
|(∇tanϕ)(ω)|2 + |ϕ(ω)|2 (3.52)

then solve

∆Sn−1w(ω) = g(ω), ω ∈ Sn−1, (3.53)

and finally set

uo(X) := w(X/|X|), X ∈ Rn \ {0}. (3.54)

Then there exists a constant C such that

u
∣∣∣
∂Ω

= uo

∣∣∣
∂Ω

+C and (∂ju)
∣∣∣
∂Ω

= (∂juo)
∣∣∣
∂Ω

for 1 ≤ j ≤ n. (3.55)

Let us remark that the last condition in (3.51) implies, thanks to (2.9), that

∫
Sn−1

g(ω) dω = 0 (3.56)

which, in turn, is necessary for the solvability of ∆Sn−1w = g on Sn−1. Also, any two solutions
of this latter equation differ only by a constant (cf. (2.27)).

Proof of Proposition 3.5. Using Proposition 3.3 in the particular case when the Whitney
array in question is (0, ..., 0), we obtain

∂τjk

( ηk
|η|n−2

∂ju
)

(X) (3.57)

= − (∆Sn−1ũ)(X/|X|)
ϕ(X/|X|)n−2

√
|(∇tanϕ)(X/|X|)|2 + |ϕ(X/|X|)|2

,

for X ∈ ∂Ω.
Next, consider ḟ = (f0, f1, ..., fn) where

f0 := uo

∣∣∣
∂Ω

and fj := (∂juo)
∣∣∣
∂Ω

for 1 ≤ j ≤ n. (3.58)
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Then ḟ is a Whitney array on ∂Ω and

ηjfj = (∇ηuo)
∣∣∣
∂Ω

= 0, (3.59)

since uo is radially independent. Moreover, since f̃0(ω) = f0(ϕ(ω)ω) = uo(ϕ(ω)ω) = w(ω)

we obtain ∆Sn−1 f̃0(ω) = ∆Sn−1w(ω) = g(ω) if ω ∈ Sn−1. This, (3.52) and the fact that u is
a solution then give

− (∆Sn−1 f̃0)(X/|X|)
ϕ(X/|X|)n−2

√
|(∇tanϕ)(X/|X|)|2 + |ϕ(X/|X|)|2

= |X|3−ng1(X)

= ∂τjk

( ηk
|η|n−2

∂ju
)

(X), (3.60)

for X ∈ ∂Ω (since X = ϕ(X/|X|)X/|X| and ϕ(X/|X|) = |X| in this case). By subtracting
(3.60) from (3.57) and invoking (3.31) we then arrive at the conclusion that

∂τjk

( ηk
|η|n−2

(∂ju− fj)
)

= 0 on ∂Ω. (3.61)

Hence, (3.47) holds for ḟ as in (3.58). Having established this, (3.55) follows from (the proof
of) Proposition 3.4. �

3.4 The regularity problem with p near 2

For 1 < p <∞, set

Lpη(∂Ω) :=
{
f ∈ Lp(∂Ω) :

∫
∂Ω

|X|3−nf(X) dσ(X) = 0
}
. (3.62)

For latter purposes we also define

Lp0(∂Ω) :=
{
f ∈ Lp(∂Ω) :

∫
∂Ω

f(X) dσ(X) = 0
}
. (3.63)

Obviously, Lpη(∂Ω) = Lp0(∂Ω) when n = 3. The main result of this subsection reads as
follows:

Theorem 3.6. Let Ω ⊂ Rn be a bounded Lipschitz domain which is star-like with respect to
the origin. Then there exists ε = ε(Ω) > 0 such that, for each p ∈ (2− ε, 2 + ε), the problem
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(B′′)



∆2u = 0 in Ω,

ηj
|η|

(∂ju)
∣∣∣
∂Ω

= g0 ∈ Lp1(∂Ω),

|η|n−3∂τjk

( ηk
|η|n−2

∂ju
)∣∣∣

∂Ω
= g1 ∈ Lpη(∂Ω),

M(∇∇u) ∈ Lp(∂Ω), u(0) = 0,

(3.64)

has a unique solution. This solution can be represented as

u(X) = H(X)− 2Γ(∇ηSf)(X) + C1 + C2|X|2, X ∈ Ω, (3.65)

where

H(X) :=

∫ 1

0

h̃(tX)
dt

t
, X ∈ Ω, (3.66)

h̃ := h− h(0), h := Df1 − Sf2, (3.67)

f1 ∈ Lp1(∂Ω), f2 ∈ Lp(∂Ω), f ∈ Lp(∂Ω), (3.68)

C1 := 2Γ(∇ηSf)(0), C2 ∈ R. (3.69)

Furthermore,

‖u‖Bp,2
2+ 1

p
(Ω) ≤ C‖g0‖Lp1(∂Ω) + C‖g1‖Lp(∂Ω) if 2− ε < p ≤ 2, (3.70)

‖u‖F p,q
2+ 1

p
(Ω) ≤ C‖g0‖Lp1(∂Ω) + C‖g1‖Lp(∂Ω) if 2 ≤ p < 2 + ε, 0 < q <∞. (3.71)

For each p > n−1
2

, the membership M(∇∇u) ∈ Lp(∂Ω) further implies

u ∈ F
np
n−1

,2

2 (Ω) ↪→ C2−n−1
p (Ω̄). (3.72)

In particular, the solution u of (3.64) satisfies


u ∈ C1+θ(Ω̄) if n = 3,

u ∈ C 1
2

+θ(Ω̄) if n = 4,

u ∈ Cθ(Ω̄) if n = 5,

for some θ > 0. (3.73)
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Proof of Theorem 3.6. Assume that u is as in (3.65), with the conventions in (3.66)-(3.69),
in which we take C2 = 0. Then u(0) = ∆u(0) = 0 and, by Lemma 2.10, M(∇∇u) ∈ Lp(∂Ω).
Next, we compute

〈X, (∇u)(X)〉 = h̃(X)− 2〈X,∇Γ(∇ηSf)(X)〉, X ∈ Ω. (3.74)

While u in (3.65) is only defined in Ω, the right-hand side of (3.74) turns out to be meaningful
in Ω− as well. Keeping this in mind, we may compute on ∂Ω−

∂−ν

[
h̃(X)− 2〈X,∇Γ(∇ηSf)(X)〉

]
= ∂−ν h+ ∂−ν

[
−2〈X,∇Γ(divS(fη))(X)〉 − 2(2− n)〈X,∇Γ(Sf)(X)〉

]
= ∂−ν h− T ∗f + C1f, (3.75)

where we have set

C1f(X) := 2(n− 2)∂−ν(X)

[
〈X,Γ(∇Sf)(X)〉 − 〈X,S(ν Sf)(X)〉

]
, X ∈ ∂Ω. (3.76)

Above, we have made use of (2.34)-(2.36), the identity in (8) of Lemma 2.6, (2.196) and an
integration by parts. Next, since by (3.67), (2.141) and (2.37),

∆
[
h̃(X)− 2〈X,∇Γ(∇ηSf)(X)〉

]
= 0 in Ω−, (3.77)

uniqueness in the exterior Neumann problem for harmonic functions, plus the associated
integral representation formula, gives

h̃(X)− 2〈X,∇Γ(∇ηSf)(X)〉

= S
(

(1
2
I +K∗)−1(∂−ν h− T ∗f + C1f)

)
(X)− h(0) in Ω−. (3.78)

Consequently,

(∇ηu)
∣∣∣
∂Ω+

=
[
h̃− 2∇ηΓ(∇ηSf)

]∣∣∣
∂Ω+

=
[
h̃− 2∇ηΓ(∇ηSf)

]∣∣∣
∂Ω−

+jump
(
h̃− 2∇ηΓ(∇ηSf)

)
= S

(
(1

2
I +K∗)−1(∂−ν h− T ∗f + C1f)

)
− h(0) + f1, (3.79)

since the jump of h̃ is f1, and ∇ηΓ(∇ηSf) does not jump across ∂Ω.
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Consider now the second boundary condition in (3.64) when u is as in (3.65)-(3.69) where
once again we take C2 = 0. We have

|η|n−3∂τjk

( ηk
|η|n−2

∂ju
)

= |η|−1
[
∂ν∇η − 〈ν, η〉∆ + ∂ν

]
H + (n− 2)|η|−3〈ν, η〉∇ηH

−2|η|n−3∂+
τjk

( ηk
|η|n−2

∂jΓ(∇ηSf)
)

= |η|−1
[
∂+
ν h+ ∂νH

]
+ (n− 2)|η|−3〈ν, η〉h̃

−2|η|n−3∂−τjk

( ηk
|η|n−2

∂jΓ(∇ηSf)
)
, (3.80)

since ∂jΓ(∇ηSf) does not jump across ∂Ω. Furthermore,

−2|η|n−3∂−τjk

( ηk
|η|n−2

∂jΓ(∇ηSf)
)

= −2|η|−1
[
∂−ν ∇η − 〈ν, η〉∆− + ∂ν

]
Γ(∇ηSf)

−2(n− 2)|η|−3〈ν, η〉∇ηΓ(∇ηSf)

= −2|η|−1
[
∂−ν ∇ηΓ(∇ηSf) + ∂νΓ(∇ηSf)

]
−2(n− 2)|η|−3〈ν, η〉∇ηΓ(∇ηSf)

= −|η|−1T ∗f + C2f, (3.81)

where

C2f := −2|η|−1∂νΓ(∇ηSf)− 2(n− 2)|η|−3〈ν, η〉∇ηΓ(∇ηSf)

−2(2− n)|η|−1∂−ν ∇ηΓ(Sf). (3.82)

Combining (3.80-(3.82) we therefore obtain

|η|n−3∂τjk

( ηk
|η|n−2

∂ju
)

= |η|−1
[
∂+
ν h− T ∗f

]
+ |η|−1∂νH + (n− 2)|η|−3〈ν, η〉h̃+ C2f (3.83)

= |η|−1
[
∂−ν h− T ∗f

]
+ |η|−1f2 + |η|−1∂νH + (n− 2)|η|−3〈ν, η〉h̃+ C2f,

since ∂+
ν h− ∂−ν h = f2.
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Having established the trace formulas (3.79), (3.83), we now introduce

Φ(f1, f2, f) :=

(
ηj
|η|

(∂ju)
∣∣∣
∂Ω

, |η|n−3∂τjk

( ηk
|η|n−2

∂ju
)∣∣∣

∂Ω
, ∂−ν h− T ∗f

)
, (3.84)

where u, h, h̃, H, f1, f2, f are as in (3.65)-(3.69) with the convention that C2 = 0, acting as a
linear operator

Φ : Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω) −→ Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω). (3.85)

Explicitly,

Φ(f1, f2, f) =


|η|−1S

(
(1

2
I +K∗)−1(∂−ν h− T ∗f + C1f)

)
− |η|−1h(0) + |η|−1f1

|η|−1
[
∂−ν h− T ∗f

]
+ |η|−1f2 + |η|−1∂νH + (n− 2)|η|−3〈ν, η〉h̃+ C2f

∂−ν h− T ∗f

(3.86)

where C1,C2 are as in (3.76) and (3.82), respectively. This suggests the decomposition

Φ =Mη ◦ A ◦ Φ0 + Φ1, (3.87)

where

Mη(g1, g2, g) := (|η|−1g1, |η|−1g2, g), (3.88)

A(g1, g2, g) :=
(
S
(

(1
2
I +K∗)−1g

)
+ g1 , g + g2 , g

)
, (3.89)

Φ0(f1, f2, f) := (f1, f2, ∂
−
ν h− T ∗f), (3.90)

and

Φ1(f1, f2, f) :=


|η|−1S

(
(1

2
I +K∗)−1(C1f)

)
− |η|−1h(0)

|η|−1∂νH + (n− 2)|η|−3〈ν, η〉h̃+ C2f

0

 , (3.91)

where h, h̃,H are as in (3.66)-(3.67). Note that

Mη : h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) −→ h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) (3.92)
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is an isomorphism for every n−1
n
< p <∞,

A : h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) −→ h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) (3.93)

is an isomorphism for every 1− ε < p < 2 + ε, and

Φ1 : h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) −→ h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) (3.94)

is a compact operator for every 1− ε < p < 2 + ε. In addition, thanks to (2.218),

Φ0 : h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) −→ h1,p(∂Ω)⊕ hp(∂Ω)⊕ hp(∂Ω) (3.95)

is an isomorphism whenever 2− ε < p < 2 + ε. In concert, these properties ensure that the
operator

Φ : Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω) −→ Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω)

is Fredholm with index zero whenever 2 + ε < p < 2 + ε. (3.96)

To study its null-space, assume that 2 + ε < p < 2 + ε and consider a triplet (f1, f2, f) ∈
Lp1(∂Ω) ⊕ Lp(∂Ω) ⊕ Lp(∂Ω) such that Φ(f1, f2, f) = 0. Then, if u is as in (3.65)-(3.69)
for the choice C2 = 0, it follows that u solves the homogeneous version of (3.64). As a
consequence, Proposition 3.4 and the uniqueness results from [43] (for the problem (3.18))
give that necessarily u ≡ 0 in Ω. Thus, granted (3.65) and keeping in mind that we take
C2 = 0, we have

−2∇ηSf = ∆u = 0 in Ω, (3.97)

which further implies that

0 = u = H + 0 + C1 + 0 in Ω, (3.98)

i.e., H ≡ −C1 in Ω. Hence, H ≡ 0 in Ω since H(0) = 0 by (3.66). In turn, this forces

0 = ∇ηH = h̃ in Ω, (3.99)

i.e., h is constant in Ω. In particular, h̃ ≡ 0 in Ω, and ∂+
ν h = 0 on ∂Ω. This implies

f2 = ∂+
ν h− ∂−ν h = −∂−ν h. (3.100)
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Going further, (3.67) and the fact that h is constant in Ω guarantees that h(0) = h|∂Ω+ =
(1

2
I +K)f1 − Sf2 on ∂Ω. In turn, this gives

f1 = S
(

(1
2
I +K∗)−1f2

)
+ h(0) on ∂Ω. (3.101)

On the other hand, ∇ηSf ≡ 0 in Ω gives, on account of (2.33),

Sf ≡ constant in Ω. (3.102)

Recall the function fo from (2.134) and the fact that the operator (2.135) is an isomorphism
whenever 1 < p < 2 + ε. In light of this and of (3.102), we then obtain

f ∈ 〈fo〉 := {Cfo : C ∈ R}. (3.103)

Finally, after recalling (3.100), an inspection of the third line of Φ in (3.86) gives that

f2 = −T ∗f. (3.104)

In summary, the above analysis shows that Ker Φ is the two-dimensional space

{(f1, f2, f) ∈ Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω) : Φ(f1, f2, f) = 0}

=
{(
C1 S(1

2
I +K∗)−1T ∗fo + C2 , −C1 T

∗fo , C1 fo

)
: C1, C2 ∈ R

}
(3.105)

whenever 2 − ε < p < 2 + ε. By relying on this, (3.96) and Fredholm theory, one can then
easily show that the natural operator induced by Φ at the level

Φ̃ :
[
Lp1(∂Ω)/R

]
⊕ Lp(∂Ω)⊕ Lp0(∂Ω) −→ Lp1(∂Ω)⊕ Lpη(∂Ω)⊕ Lp(∂Ω) (3.106)

is one-to-one with closed range of codimension one, whenever 2 + ε < p < 2 + ε. Above,
Lpη(∂Ω) and Lp0(∂Ω) are as in (3.62) and (3.63), respectively.

We now claim that

Φ̂ :
[
Lp1(∂Ω)/R

]
⊕ Lp(∂Ω)⊕ Lp0(∂Ω) −→

[
Lp1(∂Ω)/〈 |η| 〉

]
⊕ Lpη(∂Ω)⊕ Lp(∂Ω)

is an isomorphism whenever 2 + ε < p < 2 + ε, (3.107)

where Φ̂ is the operator naturally induced by Φ in this context. Indeed, from what we have
just proved about the operator (3.106), it follows that Φ̂ in (3.107) is Fredholm with index
zero. Thus, it suffices to show that this is also one-to-one. To this end, assume that the
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triplet (f1, f2, f) ∈ Lp1(∂Ω) ⊕ Lp(∂Ω) ⊕ Lp0(∂Ω) is such that Φ(f1, f2, f) = (C|η|, 0, 0) and
define u as in (3.65)-(3.69) with C2 = 0. Then, as is visible from (3.65),

∆u(0) = 0 (3.108)

and u solves



∆2u = 0 in Ω,

ηj
|η|

(∂ju)
∣∣∣
∂Ω

= C|η| on ∂Ω,

|η|n−3∂τjk

( ηk
|η|n−2

∂ju
)∣∣∣

∂Ω
= 0 on ∂Ω,

M(∇∇u) ∈ Lp(∂Ω), u(0) = 0.

(3.109)

In order to continue, observe that

ηj
|η|

(∂j|η|2) = 2|η| and |η|n−3∂τjk

( ηk
|η|n−2

∂j|η|2
)∣∣∣

∂Ω
= 0 on ∂Ω. (3.110)

The second equality follows by noting that (νj∂k − νk∂j)(xjxk|X|2−n) = 0, since the ex-
pressions in the first and second set of parentheses are, respectively, antisymmetric and
symmetric in j, k. Thus, if we set

v(X) := u(X)− C

2
|X|2, X ∈ Ω, (3.111)

it follows that v is a solution of the homogeneous version of (3.64). Much as before, this
implies that v ≡ 0 in Ω, i.e.,

u(X) =
C

2
|X|2, X ∈ Ω. (3.112)

In turn, this and (3.108) give that

0 = ∆u(0) = nC, (3.113)

i.e., C = 0. Consequently, u ≡ 0 in Ω, by (3.112). With this in hand, the same analysis as in
the first half of the current proof shows that (f1, f2, f) belongs to the space in the right-hand
side of (3.105). Next, since f integrates to zero on ∂Ω and fo does not, we may deduce from
this that f = f2 = 0 and f1 is a constant on ∂Ω. Hence, with [f1] denoting the class of f1
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(in this case, modulo constants), ([f1], f2, f) is zero in
[
Lp1(∂Ω)/R

]
⊕Lp(∂Ω)⊕Lp0(∂Ω). This

shows that Φ̂ in (3.107) is one-to-one and, hence, an isomorphism.
Having established (3.107), the representation formula (3.65) for the solution u of (3.64)

is justified as follows. Start by taking

([f1], f2, f) := Φ̂−1([g0], g1, 0), (3.114)

then consider the function H as in (3.66)-(3.67), and the constant C1 as in (3.69). The
function defined by v(X) := H(X)− 2Γ(∇ηSf)(X)− C1, for X ∈ Ω, then solves



∆2v = 0 in Ω,

ηj
|η|

(∂jv)
∣∣∣
∂Ω

= g0 + C|η| on ∂Ω,

|η|n−3∂τjk

( ηk
|η|n−2

∂jv
)∣∣∣

∂Ω
= g2 on ∂Ω,

M(∇∇v) ∈ Lp(∂Ω), v(0) = 0,

(3.115)

for some constant C ∈ R. With this in hand and recalling (3.110), it follows that u as in
(3.65) solve (3.64) for the choice C2 := C/2.

Uniqueness for (3.64) follows from Proposition 3.4 and the corresponding uniqueness for
(3.18) (when M(∇∇u) ∈ Lp(∂Ω) with |p− 2| < ε) from [43].

Finally, consider (3.70)-(3.71). Recall that, when 2 − ε < p < 2 + ε, u is given by the
integral representation formula (3.65) with f1 ∈ Lp1(∂Ω) and f2, f ∈ Lp(∂Ω). The claim
we make is that u ∈ Bp,p∨2

2+1/p(Ω), plus estimates. Given that u ∈ Ker ∆2, the estimates

(3.184)-(3.185) will then follow from this claim and Theorem 4.16.
To prove that u ∈ Bp,p∨2

2+1/p(Ω), we first note that the piece corresponding to the Newtonian

potential is of the right order, by (2.146) and Proposition 4.23. To see that H in (3.66)-(3.67)

is also in Bp,p∨2
2+1/p(Ω), we write ∇ηH = h̃ ∈ Bp,p∨2

1+1/p(Ω), by Proposition 4.23 (here, (2.120) and

(4.93) are also used). With this in hand, the desired conclusion follows from Proposition 4.17.
This finishes the proof of the theorem. �

Let πj(x1, x2, x3) := xj, 1 ≤ j ≤ 3, be the canonical projection onto the j-th component.

Lemma 3.7. For 2− ε < p < 2 + ε, define the bounded, linear assignment

Ψ : Lpη(∂Ω) −→ Lp0(∂Ω), Ψg := π3(Φ̂−1([0], g, 0)). (3.116)

Then the above operator is well-defined, linear, bounded and one-to-one.

Proof. Fix p ∈ (2 − ε, 2 + ε) and suppose that Ψg = 0 for some g ∈ Lpη(∂Ω). Thus, if we

set ([f1], f2, f) := Φ̂−1([0], g, 0), our assumptions give that f = 0. For the functions f1, f2, f ,
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consider now u, h, h̃, H as in (3.65)-(3.69) with C2 = 0. Then, from the format of the third
line of Φ in (3.86), we obtain ∂−ν h = T ∗f = 0. By the uniqueness in the exterior Neumann
problem and the decay of the function h at infinity, this forces

h ≡ 0 in Ω−. (3.117)

Also, recalling (3.86), we have

[0] = π1([0], g, 0) = π1(Φ̂([f1], f2, 0)) = [ |η|−1(f1 − h(0)) ]. (3.118)

This means that there exists C ∈ R such that |η|−1(f1 − h(0)) = C|η| on ∂Ω, i.e.,

f1 = C|η|2 + h(0) on ∂Ω. (3.119)

This and (3.117) then imply that h|∂Ω+ = h|∂Ω− + f1 = C|η|2 + h(0) or, equivalently,

h̃
∣∣∣
∂Ω+

= C|η|2. (3.120)

Since h̃ is harmonic in Ω and vanishes at the origin, if C 6= 0 this would imply |η|2 ∈ Lpω(∂Ω),

contradicting (2.138). Thus, necessarily C = 0, which then entails h̃|∂Ω+ = 0. Hence, by the
uniqueness in the Dirichlet problem,

h ≡ constant in Ω+, (3.121)

which forces h̃ ≡ 0 in Ω and, further, H ≡ 0 in Ω. In turn, this and the format of the second
line in (3.86) allow us to write

g = π2([0], g, 0) = π2(Φ̂([f1], f2, 0)) = |η|−1f2, (3.122)

i.e. g = |η|−1f2. However, since D1 = 0 in Ω−, we may write 0 = h|Ω− = −Sf2, yielding
f2 = 0. Thus, g = 0, proving that the mapping (3.116) is one-to-one. �

Lemma 3.8. For 2− ε < p < 2 + ε, the operator Ψ in (3.116) is Fredholm, of index zero.

Proof. For an arbitrary g ∈ Lpη(∂Ω) consider f := Ψg and set [f1] := π1(Φ̂−1([0], g, 0)), f2 :=

π2(Φ̂−1([0], g, 0)). In particular, f1 ∈ Lp1(∂Ω), f2 ∈ Lp(∂Ω) satisfy Φ(f1, f2, f) = (0, g, 0).
Referring to (3.86), this gives

T ∗f = ∂−ν h = ∂νDf1 − (1
2
I +K∗)f2 (3.123)
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as well as

f1 + C (f) = 0, f2 + C (f1, f2, f) = g, (3.124)

where we have denoted by C generic compact operators. Since [f1] and f2 depend continu-
ously on g, we may rewrite (3.124) as

f1 = C (g), f2 = g + C (g). (3.125)

Returning with these in (3.123) we obtain

T ∗f = −(1
2
I +K∗)g + C (g) (3.126)

so that

Ψg = f = −(T ∗)−1(1
2
I +K∗)g + C (g). (3.127)

That is,

Ψ = −(T ∗)−1(1
2
I +K∗) + C . (3.128)

Observing that (T ∗)−1(1
2
I + K∗) + C : Lp(∂Ω) → Lp(∂Ω) is a Fredholm operator, of index

zero, the desired conclusion readily follows. �

Proposition 3.9. If Ω is as in (2.4), then there exists ε = ε(Ω) > 0 such that the operator
Ψ in (3.116) is invertible for each p ∈ (2− ε, 2 + ε).

Proof. This is an immediate consequence of Lemma 3.7 and Lemma 3.8. �

3.5 The nonstandard version with atomic data

The following is Theorem 9.6 on p. 965 in [43]; see also Theorem 1.2 on p. 619 in [45].

Theorem 3.10. Let Ω ⊂ R3 be a bounded Lipschitz domain with connected boundary. Then,
whenever

f0, f1, f2, f3 ∈ h1,1
at (∂Ω), (3.129)

the problem (3.18)-(3.19) has a unique solution with M(∇∇u) ∈ L1(∂Ω). In addition,

‖M(∇∇u)‖L1(∂Ω) ≤ C

3∑
j,k,r=1

‖∂τjkfr‖H1
at(∂Ω), (3.130)

where the constant C depends only on the Lipschitz character of Ω.
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The goal is to use the results from § 3.4 in order to convert the above theorem into a
well-posedness result from the problem (3.28) with atomic data.

Proposition 3.11. Assume that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like
with respect to the origin. Then there exists a constant C > 0, depending only on the Lipschitz
character of Ω, with the following significance. Let u be a solution (in the L2 sense) of the
problem


∆2u = 0 in Ω,

ηj∂ju = 0 on ∂Ω,

∂τjk

( ηk
|η|
∂ju
)

= a on ∂Ω,

(3.131)

where the datum a : ∂Ω→ R satisfies (for some point Xo ∈ ∂Ω and some small r > 0),

supp a ⊆ ∂Ω ∩B(Xo, r), ‖a‖L∞(∂Ω) ≤ r−2,

∫
∂Ω

a dσ = 0. (3.132)

Then

‖M(∇∇u)‖L1(∂Ω) ≤ C. (3.133)

Proof. Proposition 3.5 with n = 3 and g1(X) := a(X) for X ∈ ∂Ω, gives that (modulo an
additive constant) u solves the problem (3.18)-(3.19) with

f0 := uo

∣∣∣
∂Ω
, fj := (∂juo)

∣∣∣
∂Ω
, 1 ≤ j ≤ 3, (3.134)

where uo(X) := w(X/|X|), X ∈ R3 \ {0}, and w solves

∆S2w(ω) = −a(ϕ(ω)ω)ϕ(ω)
√
|(∇tanϕ)(ω)|2 + |ϕ(ω)|2, ω ∈ S2. (3.135)

Observe that a(ϕ(ω)ω)ϕ(ω)
√
|(∇tanϕ)(ω)|2 + |ϕ(ω)|2 is, up to a fixed multiplicative con-

stant, an atom in H1
at(S

2), so elliptic regularity (on the unit sphere) implies that

‖∇tanw‖h1,1
at (S2) ≤ C, (3.136)

for some C depending only on the Lipschitz constant of ϕ. Since for X = ϕ(ω)ω ∈ ∂Ω,
ω ∈ S2,

fj(X) = (∂juo)(X) = ϕ(ω)−1(∇tanw)j(ω), 1 ≤ j ≤ 3, (3.137)
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and since the mapping h1,1
at (S2) 3 v 7→ v̂ ∈ h1,1

at (∂Ω) with v̂(X) := v(X/|X|) is bounded (as
is easily seen at the atomic level), it follows from (3.136) that

‖fj‖h1,1
at (∂Ω) ≤ C, 1 ≤ j ≤ 3. (3.138)

With this in hand, (3.133) follows from Theorem 3.10. �

Having established Proposition 3.11, we wish to use this atomic estimate in order to prove
the boundedness and, later, invertibility, of certain boundary operators on Hardy spaces. For
the time being, we aim at proving the following.

Proposition 3.12. Assume that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like
with respect to the origin. Then Ψ in (3.116) extends to a linear, bounded operator

Ψ : H1
at(∂Ω) −→ H1

at(∂Ω). (3.139)

Proof. Consider the solution u of (3.64) (in the L2 sense) with data g0 ≡ 0 and g1 := a,
where a is as in (3.132). From the discussion in § 3.4, we have

u = H − 2Γ(∇ηS(Ψa)) + C1 + C2|η|2 in Ω, (3.140)

where

C1 = ∇ηS(Ψa)(0), C2 = ∆u(0)/6. (3.141)

In particular, ∆u(X) = ∇ηS(Ψa)(X) + ∆u(0), for X ∈ Ω. By virtue of Lemma 2.12 and
Proposition 3.11, this implies

‖M(∇S(Ψa))‖L1(∂Ω) ≤ C‖M(∇ηS(Ψa))‖L1(∂Ω)

≤ C‖M(∆u)‖L1(∂Ω) + C |∆u(0)|

≤ C‖M(∆u)‖L1(∂Ω) ≤ C, (3.142)

for some finite C = C(Ω) > 0, independent of the atom a. Next, recall that

∆v = 0 in Ω =⇒ ‖∂νv‖H1
at(∂Ω) ≤ C‖M(∇v)‖L1(∂Ω), (3.143)

where C = C(Ω) > 0 is independent of v. Cf. [11] for a proof. Utilizing this for the choice
v := S(Ψa) gives, after a reference to (3.142), that

‖(−1
2
I +K∗)(Ψa)‖H1

at(∂Ω) ≤ C, (3.144)
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for every atom a in H1
at(∂Ω). Since Ψa ∈ L2

0(∂Ω) ↪→ H1
at(∂Ω) and

−1
2
I +K∗ : H1

at(∂Ω) −→ H1
at(∂Ω) (3.145)

is an isomorphism (cf. [11]), we finally arrive at the conclusion that there exists a finite
constant C = C(Ω) > 0 such that

‖Ψa‖H1
at(∂Ω) ≤ C, (3.146)

for every atom a in H1
at(∂Ω). Granted this, and given Lemma 3.7, it follows that the operator

(3.139) is bounded. �

The above end-point boundedness result further entails the following.

Proposition 3.13. If Ω ⊂ R3 is a bounded Lipschitz domain which is star-like with respect
to the origin then there exists ε = ε(Ω) > 0 with the property that the operator Ψ in (3.116)
is well-defined and bounded whenever 1 < p < 2 + ε.

Proof. This follows by interpolating (by the complex method) the results in Lemma 3.7 and
Proposition 3.12. �

Next, assuming that Ω is as in (2.4) and |p− 2| < ε, consider the operator

Θ : Lpη(∂Ω) −→ Lp(∂Ω), Θg := ∂−ν (Df1 − Sf2),

where [f1] := π1(Φ̂−1([0], g, 0)), f2 := π2(Φ̂−1([0], g, 0)).
(3.147)

Unraveling definitions we see that, whenever 2− ε < p < 2 + ε,

T ∗ ◦Ψ = Θ, as operators mapping Lpη(∂Ω) into Lp(∂Ω). (3.148)

Next, we desire an alternative description of Θ in (3.147) which emphasizes Ψ in place of

Φ̂−1. With this goal in mind, fix an arbitrary g ∈ Lpη(∂Ω) and set ([f1], f2, f) := Φ̂−1([0], g, 0),
so that

Φ(f1, f2, f) = (C|η|, g, 0), for some C ∈ R. (3.149)

Consequently, if h, h̃,H are as in (3.66)-(3.67), then

f = Ψg (3.150)

by (3.116) and, by (3.86), (3.65),
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C = − 1

n
∆u(0), (3.151)

where u is the unique solution of (3.64) with data g0 := 0 and g1 := g. In particular, the
assignment B : g 7→ C is linear and bounded, by Theorem 3.6, when acting from Lpη(∂Ω) with
2− ε < p < 2 + ε. If n = 3, the same is true when B acts from H1

at(∂Ω), by Proposition 3.11.
By interpolation, it follows that B acts boundedly from Lp0(∂Ω) when n = 3, provided
1 < p < 2 + ε.

Going further, (3.149) implies T ∗f = ∂−ν h and

S
(

(1
2
I +K∗)−1(C1f)

)
− h(0) + f1 = |η|2Bg, (3.152)

f2 + (n− 2)|η|−2〈ν, η〉h̃+ C2f = |η|g, (3.153)

by (3.86). Let us schematically re-write (3.152)-(3.152) in the form

(I + C )

(
ξ

f2

)
= A

(
Ψg

g

)
+

(
0

|η|g

)
(3.154)

where ξ := f1 − h(0) and

C := (n− 2)|η|2〈ν, η〉

(
0 0

1
2
I +K − S

)
, A :=

(
A1 A3

A2 0

)
, (3.155)

with

A1 := −S(1
2
I +K∗)−1C1, A2 := −C2, A3 := |η|2B, (3.156)

where B, C1 and C2 are as before. Then

C : h1,p(∂Ω)⊕ hp(∂Ω) −→ h1,p(∂Ω)⊕ hp(∂Ω), n−1
n
< p <∞, (3.157)

is compact and smoothing, in the sense that, when applied to functions, the output has a
better integrability exponent than the input. Let us also observe that, by Lemma 2.8, the
operator

I + C : h1,p(∂Ω)⊕ hp(∂Ω) −→ h1,p(∂Ω)⊕ hp(∂Ω) (3.158)

is invertible for n−1
n
< p <∞.

Specializing this discussion to the case when n = 3, we have
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(
f1 − h(0)

f2

)
= (I + C )−1

[
A

(
Ψg

g

)
+

(
0

|η|g

)]

= (I − (I + C )−1C )

[
A

(
Ψg

g

)
+

(
0

|η|g

)]
(3.159)

which we rewrite as

(
f1 − h(0)

f2

)
=

(
0

|η|g

)
+

(
C ′g

C ′′g

)
(3.160)

for some smoothing compact operators C ′, C ′′ (here Proposition 3.13 is used). This finally
gives

Θg = ∂−ν (Df1 − Sf2) = ∂−ν (D(f1 − h(0))− Sf2)

=
(
∂νD , −(1

2
I +K∗)

)( f1 − h(0)

f2

)
= −(1

2
I +K∗)(|η|g) + C̃ g, (3.161)

for some operator C̃ which is smoothing and compact on hp(∂Ω), for 1 ≤ p < 2 + ε.

Proposition 3.14. Assume that Ω ⊂ R3 is a bounded Lipschitz domain which is star-
like with respect to the origin. There exists ε > 0 with the property that (3.147) extends
to an isomorphic embedding (i.e., as a one-to-one operator with closed range), with finite
dimensional cokernel both in the context

Θ : H1
at(∂Ω) −→ h1

at(∂Ω), (3.162)

as well as in

Θ : Lp0(∂Ω) −→ Lp(∂Ω), 1 < p < 2 + ε. (3.163)

Proof. For starters, we claim that in each instance the operator in question is Fredholm.
Indeed, this is an immediate consequence of the representation of Θ obtained in (3.161),
since both multiplication by |η| and 1

2
I+K∗ are Fredholm operators on H1

at(∂Ω) and Lp(∂Ω)
provided 1 < p < 2 + ε. This ensures that the range is closed and of finite codimension. As
for being one-to-one, since 1

2
I + K∗ is invertible on Lp(∂Ω) if 1 < p < 2 + ε, and since C̃

in (3.161) is smoothing, the null-spaces of Θ in (3.162) and (3.163) coincide with that of Θ
in (3.147) when p = 2. In this latter case, however, (3.148), Lemma 3.7 and Theorem 2.19
ensure that Ker Θ = {0}. �

With Proposition 3.14 in hand, we now return to the study of the functional analytic
properties of the operator Ψ.
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Proposition 3.15. Suppose that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like
with respect to the origin. There exists ε > 0 with the property that

Ψ : H1
at(∂Ω) −→ H1

at(∂Ω), (3.164)

Ψ : Lp0(∂Ω) −→ Lp0(∂Ω), 1 < p < 2 + ε, (3.165)

are isomorphisms.

Proof. Since T ∗ ◦Ψ = Θ with Θ an isomorphic embedding and T ∗ bounded, it follows that
Ψ has closed range both in (3.164) and (3.165). Since, by Lemma 3.8, Ψ has dense range in
both instances, it follows that Ψ in (3.164)-(3.165) is actually onto. Finally, since T ∗◦Ψ = Θ
and Θ is one-to-one, we may also deduce that Ψ is one-to-one. �

We are now in a position to establish the Fredholmness of T ∗, which is really the main
operator of interest for us, in a more general setting than that considered in Theorem 2.19.

Proposition 3.16. Let Ω ⊂ R3 be a bounded Lipschitz domain which is star-like with respect
to the origin. There exists ε > 0 with the property that

T ∗ : h1
at(∂Ω) −→ h1

at(∂Ω), (3.166)

T ∗ : Lp(∂Ω) −→ Lp(∂Ω), 1 < p < 2 + ε, (3.167)

are Fredholm operators.

Proof. Note that

T ∗ = Θ ◦Ψ−1 : H1
at(∂Ω) −→ h1

at(∂Ω) (3.168)

is Fredholm by Proposition 3.15 and Proposition 3.14. Since the difference between the
context in (3.166) and that in (3.168) is a space finite dimension, it readily follows that T ∗

in (3.166) is Fredholm. The reasoning for (3.167) is similar. �

Making use of stability results, Proposition 3.16 can be further sharpened as follows.

Theorem 3.17. Assume that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like with
respect to the origin. There exists ε > 0 with the property that

T ∗ : hpat(∂Ω) −→ hpat(∂Ω), 1− ε < p ≤ 1, (3.169)

T ∗ : Lp(∂Ω) −→ Lp(∂Ω), 1 < p < 2 + ε, (3.170)

are invertible operators.
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Proof. Combining Theorem 2.19 and Proposition 3.16 we obtain that the operators (3.166)-
(3.167) are onto if 1 ≤ p < 2 + ε. As proved in [23], the property of being onto is stable on
complex interpolation scales of quasi-Banach spaces. Consequently, there exists ε > 0 such
that the operator (3.169) is onto. With this in hand, the fact that T ∗ in (3.169)-(3.170) is
an isomorphism follows from Theorem 2.19 and Theorem 2.10 in [23]. �

Corollary 3.18. Assume that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like with
respect to the origin. There exists a small number ε > 0 such that

T : Cα(∂Ω) −→ Cα(∂Ω) if 0 < α < ε, (3.171)

T : Lp(∂Ω) −→ Lp(∂Ω) if 2− ε < p <∞, (3.172)

T : bmo (∂Ω) −→ bmo (∂Ω), (3.173)

T : vmo (∂Ω) −→ vmo (∂Ω), (3.174)

isomorphically.

Proof. The fact that the operators (3.171)-(3.173) are isomorphisms is a direct consequence
of Theorem 3.17 and duality (cf. the discussion in § 2.3). As for (3.174), first observe that,
in this context, T is well-defined, linear and bounded by (2.62), the boundedness of T on
bmo (∂Ω) and the fact that T maps Cα(∂Ω) into itself. Furthermore, by (3.171) and (3.173),
T in (3.174) is one-to-one, with dense range. By (2.60), the dual of the latter operator is T ∗

acting on h1
at(∂Ω), thus an isomorphism by Theorem 3.17. Then, Banach’s Closed Range

Theorem ensures that T in (3.174) has closed range as well. Hence, all in all, T in (3.174) is
also an isomorphism. �

The following is an extension of the claim in (3.107).

Theorem 3.19. Let Ω ⊂ R3 be a bounded Lipschitz domain which is star-like with respect to
the origin. Then there exists ε > 0 such that the operator Φ̂ in (3.107) extends isomorphically
as

Φ̂ :
[
h1,p
at (∂Ω)/R

]
⊕ hpat(∂Ω)⊕Hp

at(∂Ω) (3.175)

−→
[
h1,p
at (∂Ω)/〈 |η| 〉

]
⊕Hp

at(∂Ω)⊕ hpat(∂Ω) if 1− ε < p ≤ 1,

Φ̂ :
[
Lp1(∂Ω)/R

]
⊕ Lp(∂Ω)⊕ Lp0(∂Ω)

−→
[
Lp1(∂Ω)/〈 |η| 〉

]
⊕ Lp0(∂Ω)⊕ Lp(∂Ω) if 1 < p < 2 + ε. (3.176)

Proof. The operators
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Φ : h1,p
at (∂Ω)⊕ hpat(∂Ω)⊕ hpat(∂Ω)

−→ h1,p
at (∂Ω)⊕ hpat(∂Ω)⊕ hpat(∂Ω) if 2

3
− ε < p ≤ 1, (3.177)

Φ : Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω)

−→ Lp1(∂Ω)⊕ Lp(∂Ω)⊕ Lp(∂Ω) if 1 < p <∞, (3.178)

are well-defined, linear and bounded. Having established Theorem 3.17, the same argument
as before (based on the representation (3.87)) shows that there exists ε > 0 such that Φ in
(3.177) is Fredholm with index zero if 1− ε < p ≤ 1, whereas Φ in (3.178) is Fredholm with
index zero if 1 < p < 2 + ε. This, in turn, ensures that (3.175)-(3.176) are also Fredholm
operators with index zero. Since they are known to actually be invertible if p is near 2
(cf. (3.107)), the claim in the statement of the theorem follows from this and elementary
functional analysis. �

3.6 The Dirichlet and regularity problems in three dimensions

The results in § 3.1 and § 3.4, established in all space dimensions n ≥ 3, have been established
only for p near 2. The goal of this section is to sharpen these results in the case when the
ambient space is three-dimensional.

Theorem 3.20. For every bounded Lipschitz domain Ω ⊂ R3 which is star-like with respect
to the origin there exists ε = ε(Ω) > 0 such that if 2 − ε < p < ∞ then the boundary value
problem (3.1)-(3.2) is uniquely solvable for any g0 ∈ Lp1(∂Ω) and g1 ∈ Lp(∂Ω). Furthermore,
the solution u can be represented as in (3.3), where f is as in (3.4), and (3.6) is satisfied
for 2 ≤ p <∞.

Proof. Granted Corollary 3.18, existence and uniqueness can be established as in the proof
of Theorem 3.1. Finally, the fact that (3.6) holds for the larger range 2 ≤ p < ∞ is a
consequence of the invertibility of T in (3.172) and the same reasoning as before. �

To proceed, we record a trace result which shows that the very formulation of the regu-
larity problem with nontangential maximal function estimates remains meaningful for data
selected from Hardy spaces with p < 1.

Proposition 3.21. Let Ω ⊂ Rn be a bounded Lipschitz domain and assume that u ∈ C1(Ω)
is such that M(∇u) ∈ Lp(∂Ω) for some p ∈ (n−1

n
, 1]. Then u has a nontangential limit at

almost every boundary point on ∂Ω and, for any q ∈ (0,∞],

u
∣∣∣
∂Ω
∈ h1,p

at (∂Ω) and ‖u|∂Ω‖h1,p
at (∂Ω) ≤ C‖M(∇u)‖Lp(∂Ω) + C‖u‖Lq(O), (3.179)

for some relatively compact subset O ⊂ Ω. In particular,

‖u|∂Ω‖h1,p
at (∂Ω) ≤ C‖M(∇u)‖Lp(∂Ω) + C‖Mu‖Lp(∂Ω). (3.180)

71



Furthermore,

n∑
j,k=1

‖∂τjk(u|∂Ω)‖Hp
at(∂Ω) ≤ C‖M(∇u)‖Lp(∂Ω). (3.181)

See [36] for a proof. Once again, this result ensures that the formulation of (3.18)-(3.19) is
meaningful for all indices p ∈ (n−1

n
,∞).

Theorem 3.22. Assume that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like with
respect to the origin. Then there exists ε = ε(Ω) > 0 with the property that if

f0, f1, f2, f3 ∈ h1,p(∂Ω), 1− ε < p < 2 + ε, (3.182)

then the problem (3.18)-(3.19) has a unique solution with M(∇∇u) ∈ Lp(∂Ω). Moreover,

‖M(∇∇u)‖Lp(∂Ω) ≤ C
3∑

j,k,r=1

‖∂τjkfr‖hp(∂Ω), (3.183)

for some finite C = C(Ω) > 0. Furthermore,

‖u‖Bp,2
2+ 1

p
(Ω) ≤ C

3∑
j,k,r=1

‖∂τjkfr‖Lp(∂Ω) if 1 < p ≤ 2, (3.184)

‖u‖F p,q
2+ 1

p
(Ω) ≤ C

3∑
j,k,r=1

‖∂τjkfr‖Lp(∂Ω) if 2 ≤ p < 2 + ε, 0 < q <∞. (3.185)

Proof. Granted Theorem 3.19, existence follows as in the proof of Theorem 3.6. This latter
result also guarantees uniqueness when p is near 2. When 1 − ε < p < 2, we use the fact
that

h1,p(∂Ω) ↪→ Lp
∗
(∂Ω) (3.186)

and

∆2u = 0 and M(∇∇u) ∈ Lp(∂Ω) =⇒ M(∇u) ∈ Lp∗(∂Ω) (3.187)

provided 1
p∗

= 1
p
− 1

2
. See [39] for the implication (3.187). We may then invoke the uniqueness

part in the Lp-Dirichlet problem (3.18) with p near 2 in order to finish the proof of uniqueness
for the current problem. Finally, (3.184)-(3.185) can be justified analogously to how we have
established (3.70)-(3.71). �
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We conclude this subsection with a few comments. First, much as noted in Remark 1 at
the end of § 3.1, it is possible to patch together results such as those in Theorems 3.20-3.22,
in order to prove similar well-posedness results in arbitrary bounded Lipschitz domains in
R3.

Second, similar to what was observed in Remark 2 at the end of § 3.1, both Theorem 3.20
and Theorem 3.22 have suitable counterparts in the complements of bounded Lipschitz do-
mains. In each case, the decay condition (2.108) is to be imposed.

3.7 The Dirichlet problem with Hölder and bmo data

Here we discuss the case of the problem (3.18) with data from Hölder and BMO spaces. A
few preliminaries are necessary. Given a Lipschitz domain Ω ⊂ Rn, define the set of Carleson
measures, Car (Ω), as the subclass of Borelian measures µ on Ω satisfying

‖µ‖Car (Ω) := sup
{µ(B(X,R) ∩ Ω)

Rn−1
: X ∈ ∂Ω, 0 < R < diam (∂Ω)

}
<∞. (3.188)

Two well-known properties of Carleson measures are going to be of importance for us here.
First,

f ∈ Ln(Ω) =⇒ µ := |f | dX ∈ Car (Ω) and ‖µ‖Car (Ω) ≤ C‖f‖Ln(Ω). (3.189)

Second, let k ∈ C∞(Rn \ {0}) be an odd function which is homogeneous of degree −(n− 1).
Also, fix some b ∈ L∞(∂Ω) and assume that the operator

T f(X) :=

∫
∂Ω

k(X − Y )b(Y )f(Y ) dσ(Y ), X ∈ Ω, (3.190)

satisfies

T 1 ≡ const in Ω. (3.191)

Then, with δ(X) denoting the distance from X to ∂Ω,

∥∥ (T f)|∂Ω

∥∥
bmo (∂Ω)

+
∥∥ |∇T f |2δ dX

∥∥
Car (Ω)

≤ C‖f‖bmo (∂Ω). (3.192)

Next, we introduce a special subclass, Car ∗(Ω), of the space of Carleson measures in Ω,
by setting

µ ∈ Car ∗(Ω)
def⇐⇒ µ ∈ Car (Ω) and lim

R∗→0

 sup
X∈∂Ω

0<R<R∗

µ(B(X,R) ∩ Ω)

Rn−1

 = 0. (3.193)
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Then, in the context of (3.190)-(3.191), we also have

∥∥ (T f)|∂Ω

∥∥
vmo (∂Ω)

+
∥∥ |∇T f |2δ dX

∥∥
Car∗(Ω)

≤ C‖f‖vmo (∂Ω). (3.194)

Lemma 3.23. Assume that Ω ⊂ Rn is a bounded Lipschitz domain and consider the (formal)
application

ḟ = (f0, f1, ..., fn) 7→ h := Df0 − S
(∑n

j=1νjfj

)
. (3.195)

Then

∥∥ (∇h)|∂Ω

∥∥
bmo (∂Ω)

+
∥∥ |∇∇h|2δ dX∥∥

Car (Ω)
≤ C‖ḟ‖WA(bmo (∂Ω)), (3.196)∥∥ (∇h)|∂Ω

∥∥
vmo (∂Ω)

+
∥∥ |∇∇h|2δ dX∥∥

Car∗(Ω)
≤ C‖ḟ‖WA(vmo (∂Ω)). (3.197)

Also, for each s ∈ (0, 1),

‖h‖Cs+1(Ω̄) + sup
X∈Ω

δ(X)1−s|∇∇h(X)| ≤ C‖ḟ‖WA(Cs(∂Ω)). (3.198)

Proof. Let ḟ and h be as in the statement of the lemma. Then for each i ∈ {1, ..., n}, we
have

∂ih = ∂iDf0 − ∂iS(νjfj)

= ∂jS(∂τijf0)− ∂iS(νjfj)

= ∂jS(νifj − νjfi)− ∂iS(νjfj)

= Dfi + Rkifk (3.199)

where we have set

Rijf(X) :=

∫
∂Ω

∂τij(Y )[Γ(X − Y )]f(Y ) dσ(Y ), X ∈ Ω. (3.200)

Then (3.196) is a consequence of this and (3.190)-(3.192). In fact, (3.197) is handled similarly,
based on (3.194). Furthermore, from (3.199) and Proposition 4.21 (stated and proved later
on), it follows that

D, Rij : Cs(∂Ω) −→ Cs(Ω̄),

δ1−s∇D, δ1−s∇Rij : Cs(∂Ω) −→ L∞(Ω),
(3.201)

are bounded operators for every s ∈ (0, 1). From this, (3.198) follows. �

After this preamble, we are ready to discuss the Dirichlet problem for the bi-Laplacian
with Hölder data.
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Theorem 3.24. Let Ω ⊂ R3 be a bounded Lipschitz domain which is star-like with respect
to the origin. Then there exists ε = ε(Ω) > 0 with the property that if s ∈ (0, ε) then the
problem


∆2u = 0 in Ω,

u
∣∣∣
∂Ω

= f0 ∈ Cs(∂Ω),

(∂ju)
∣∣∣
∂Ω

= fj ∈ Cs(∂Ω), 1 ≤ j ≤ 3,

(3.202)

where, necessarily, the family ḟ := (f0, f1, . . . , fn) satisfies the compatibility conditions in
(2.21), has a unique solution u ∈ Cs+1(Ω̄). Moreover, there exists a finite constant κ > 0
such that

‖u‖Cs+1(Ω̄) + sup
X∈Ω

δ(X)1−s|∇∇u(X)| ≤ κ
3∑
j=0

‖fj‖Cs(∂Ω). (3.203)

A similar well-posedness result is valid for the exterior version of (3.202), when the decay
condition (2.108) is added.

Proof. A solution for (3.202) is constructed using the recipe in the proof of Theorem 3.1,
with g0 := f0 and g1 := ν1f1 + ν2f2 + ν3f3. Lemma 3.23 then ensures that h in (3.8) belongs
to Cs+1(Ω̄). Since by Lemma 2.13, Proposition 4.21 (with p = ∞) and (4.61), the function
in (3.9) also belongs to Cs+1(Ω̄), it follows that a solution u for (3.202) can be found such
that (3.203) holds. Uniqueness is an easy consequence of the corresponding uniqueness part
in Theorem 3.1. The estimate for ‖u‖Cs+1(Ω̄) is implicit in the above reasoning. Then (4.61)
and (4.57) allow us to prove (3.203) in full. The exterior version of (3.202), with the decay
condition (2.108) included, is dealt with via the Kelvin transform, as discussed in § 2.4. �

We now deal with the Dirichlet problem for ∆2 with data in BMO.

Theorem 3.25. Assume that Ω is a bounded Lipschitz domain in R3 which is star-like with
respect to the origin. Then the problem


∆2u = 0 in Ω,

u
∣∣∣
∂Ω

= f0 ∈ bmo (∂Ω),

(∂ju)
∣∣∣
∂Ω

= fj ∈ bmo (∂Ω), 1 ≤ j ≤ 3,

(3.204)

where, necessarily, the family ḟ := (f0, f1, . . . , fn) satisfies the compatibility conditions in
(2.21), has a unique solution u such that |∇∇u|2δ dX ∈ Car (Ω). Furthermore, there exists
a finite constant C > 0 such that
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∥∥ |∇∇u|2δ dX∥∥
Car (Ω)

≤ C

3∑
j=0

‖fj‖bmo (∂Ω). (3.205)

The solution u of (3.204) has an integral representation formula as in (3.3)-(3.4) (with
g0 := f0 and g1 := νjfj) and satisfies

|∇∇u|2δ dX ∈ Car ∗(Ω)⇐⇒ fj ∈ vmo (∂Ω), 0 ≤ j ≤ 3. (3.206)

Finally, a similar well-posedness result is valid for the exterior version of (3.204) (in which
case the decay condition (2.108) is included).

Proof. Granted Lemma 3.23 and (3.173)-(3.174), the same type of reasoning as in the proof
of Theorem 3.24 applies (with (3.189) used to handle the lower order terms in (2.190)). This
proves that (3.204) is well-posed. The right-to-left implication in (3.206) is a consequence of
(3.174) and the integral representation formula for u. The left-to-right implication in (3.206)
using similar arguments to those in [15]. The exterior version of (3.204) can be dealt with
via the Kelvin transform. �

The portion of Theorem 3.25 dealing with BMO data has first been proved in [44], using
a different approach (which emphasizes estimates for the associated Green function). In
closing, we once again wish to point out that, as far as the well-posedness of the problems in
Theorem 3.24 and Theorem 3.25 is concerned, the condition that the domain is star-shaped
can, much as before, be eliminated a posteriori.

4 Smoothness spaces

In preparation for discussing the inhomogeneous problem for the bi-Laplacian, in this section
we collect a number of results whose general aim is to clarify how the quality of being
biharmonic affects the membership to various smoothness spaces.

4.1 Some weighted norm inequalities

For an open set Ω ⊂ Rn set δ(X) := dist (X, ∂Ω). In order to facilitate the subsequent
discussion, we make the following

Definition 4.1. Assume that Ω is an open subset of Rn and set δ(X) := dist(X, ∂Ω),
X ∈ Rn. Also, fix 0 < p < ∞. A function u ∈ Lploc(Ω) is said to be p-subaveraging if there
exists a positive constant C with the following property:

|u(X)| ≤ C

(∫
−
Br(X)

|u(Y )|p dY
) 1

p

(4.1)

for almost every X ∈ Ω and all r ∈ (0, δ(X)).
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Employing ideas first developed by Fefferman and Stein in [17], the following result can be
proved.

Lemma 4.1. If there exists p0 > 0 such that u is p0-subaveraging function, then u is p-
subaveraging for every p ∈ (0,∞).

Granted this, it is unequivocal to refer to a function u as simply being sub-averaging if it
is p-sub-averaging for some p ∈ (0,∞). The optimal constants which can be used in (4.1)
make up what we call the subaveraging character of the function u.

There are clear connections between the subaveraging property and reverse Hölder esti-
mates. To illustrate this, we state the following.

Lemma 4.2. Let u be a subaveraging function in a domain Ω ⊂ Rn and assume that 0 <
p, q <∞. Then

(∫
−
Br(X)

|u(Y )|q dY
) 1

q

≤ C

(∫
−
B2r(X)

|u(Y )|p dY
) 1

p

(4.2)

uniformly for x ∈ Ω and 0 < r < δ(X)/2, where the constant C depends only on p, q, n and
the subaveraging character of u.

Assume next that

L =
∑
|γ|=m

aγ∂
γ (4.3)

is a (homogeneous) constant-coefficient, differential operator of order m ∈ 2 N in Rn, which
is elliptic, in the sense that there exists a finite constant Λ > 1 such that if σ(L; ξ) :=
(−1)m/2

∑
|γ|=m aγξ

γ, then

Λ−1|ξ|m ≤ (−1)m/2σ(L; ξ) ≤ Λ|ξ|m, ∀ ξ ∈ Rn. (4.4)

or a given open set Ω ⊂ Rn, denote by KerL the space of all C∞ functions satisfying Lu = 0
in Ω. We present some useful interior estimates, which are essentially folklore.

Lemma 4.3. Let L be an elliptic differential operator as above and assume that Ω ⊂ Rn is
open. Then for each u ∈ KerL, 0 < p <∞, k ∈ No, and x ∈ Ω, 0 < r < δ(X),

|∇ku(X)|p ≤ C

rkp

∫
−
Br(X)

|u(Y )|p dY (4.5)

where C = C(L, p, k, n) > 0 is a finite constant. In particular,

u ∈ KerL =⇒ u is subaveraging. (4.6)
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If Ω is a star-like domain with respect to the origin and u is a function defined in Ω, set

urad(X) := sup
t>0
|u(e−tX)|, X ∈ Ω̄. (4.7)

Lemma 4.4. Let Ω ⊂ Rn be a bounded Lipschitz domain, which is star-like domain with
respect to the origin, and consider 0 < p < 1 along with s > −1/p. Then for a subaveraging
function u in Ω,

(∫
Ω

|urad(X)|p δ(X)sp dX

)1/p

≤ κ

(∫
Ω

|u(X)|p δ(X)sp dX

)1/q

(4.8)

where κ depends only on p, s, n, the Lipschitz character of Ω and the subaveraging character
of u.

Lemma 4.5. Let Ω be a Lipschitz domain in Rn and assume that L is an elliptic operator
as in (4.3). Then there exists a finite constant C = C(L,Ω, p, s, k) > 0 such that

(∫
Ω

(δ(X)s+k|∇ku(X)|)p dX
)1/p

≤ C
(∫

Ω

(δ(X)s|u(X)|)p dX
)1/p

(4.9)

holds for any u ∈ KerL provided 0 < p <∞, s ∈ R, and k ∈ No.

Lemma 4.6. Assume that Ω is a bounded Lipschitz domain in Rn and fix k, a nonnegative
integer, 0 < q ≤ p < ∞, and s ∈ R with sp > −1. Also, let L be an elliptic, homogeneous,
constant coefficient operator. Then there exists a relatively compact subset O of Ω such that

(∫
Ω

(δ(X)s|u(X)|)p dX
)1/p

≤ C

[(∫
Ω

(δ(X)s+k|∇ku(X)|)p dX
)1/p

+ sup
X∈O
|u(X)|

]
, (4.10)

uniformly for u ∈ KerL.

Let us also record here the following version of Hardy’s inequality.

Lemma 4.7. Assume that f : R→ [0,∞] is measurable, r > 0 and 0 ≤ M ≤ ∞. Then the
estimate

(∫ M

0

(∫ M

x

yqf(y) dy

)p
xr−1 dx

)1/p

≤ C(p, q, r)

(∫ M

0

(yq+1f(y))pyr−1 dy

)1/p

(4.11)

holds provided either 1 ≤ p <∞, or 0 < p < 1 and f is nonincreasing.

Our last lemma here is a result to the effect that, for biharmonic functions, the radial
derivative controls the entire gradient in a weighted Lp-sense.
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Lemma 4.8. Let Ω ⊂ Rn be a bounded Lipschitz domain, star-like with respect to the origin.
Also fix 0 < p <∞, a > −1. Then there exists C > 0 such that, for every harmonic function
u in Ω,

∫
Ω

δ(X)a|∇u(X)|p dX ≤ C

∫
Ω

δ(X)a|∇ηu(X)|p dX. (4.12)

Proof. We shall show that there exist a relatively compact neighborhood Õ of the origin in
Ω and C > 0 such that, for every harmonic function u in Ω,

∫
Ω

δ(x)a|∇u(X)|p dX ≤ C

∫
Ω

δ(X)a|∇ηu(X)|p dX + C

∫
eO |u|

p dX. (4.13)

Indeed, we claim that (4.13) implies (4.12). To see this, note that the inequality (4.12) is
invariant if we renormalize the function u so that u(0) = 0. Assume that this is the case

and, for X ∈ Õ, write (cf. (2.33)):

u(X) =

∫ 1

0

(∇ηu)(tX)
dt

t
=

∫ ε

0

(∇ηu)(tX)
dt

t
+

∫ 1

ε

(∇ηu)(tX)
dt

t
, (4.14)

where ε > 0 is a small parameter, to be specified momentarily. Hence,

|u(X)| ≤ C

∫ ε

0

|(∇u)(tX)| dt+ Cε−1

∫ 1

0

|(∇ηu)(tX)| dt =: A+B. (4.15)

Using interior estimates, it follows that for each X ∈ Õ

A ≤ Cε
(∫
O
|∇u|p

)1/p

and B ≤ Cε−1
(∫
O
|∇ηu|p

)1/p

, (4.16)

where O is a slightly larger set than Õ (which can be taken to be independent of ε). Then
the majorant of A can be absorbed into the left-hand side of (4.12), granted that ε > 0 is
small enough, while the majorant of B is of the right order. This finishes the justification of
the fact that it suffices to prove (4.13).

To establish (4.13), we shall first treat the case when 0 < p < 1. Pick Õ ⊂⊂ O two
relatively compact open neighborhoods of the origin in Ω, and fix some sufficiently large
M > 0. Then

∫
Ω

δ(X)a|∇u(X)|p dX =

∫
Ω\O

δ(X)a|∇u(X)|p dX +

∫
O
δ(X)a|∇u(X)|p dX (4.17)

and note that
∫
O δ(X)a|∇u(X)|p dX ≤ C

∫ eO |u|p dX, by relying on interior estimates. Also,
since a > −1,
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∫
Ω\O

δ(X)a|∇u(X)|p dX =

∫
Ω\O

δ(X)a
∣∣∣∣∫ 1

0

(∇η∇u)(tX)
dt

t
+∇u(0)

∣∣∣∣p dX
≤ C

∫
Ω\O

δ(X)a
(∫ 1

e−M
|(∇η∇u)(tX)|dt

t

)p
dX

+C

∫
Ω\O

δ(X)a
(∫ e−M

0

|(∇η∇u)(tX)|dt
t

)p
dX

+C|∇u(0)|p =: I + II + III. (4.18)

In II, use |(∇η∇u)(tX)| ≤ C t sup {|(∇∇u)(Z)| : Z ∈ O} so that, by Lemma 4.3, we have

II + III ≤ C

∫
eO |u|

p dX. (4.19)

To estimate I, we first observe that interchanging ∇ and ∇η gives

I ≤
∫

Ω\O
δ(X)a

(∫ 1

e−M
|(∇∇ηu)(tX)|dt

t

)p
dX

+

∫
Ω\O

δ(X)a
(∫ 1

e−M
|(∇u)(tX)|dt

t

)p
dX =: I ′ + I ′′. (4.20)

We now focus our attention on I ′. Use polar coordinates to write each X ∈ Ω\O as X = rω,
ω ∈ Sn−1 and e−Mϕ(ω) < r < ϕ(ω). Then,

I ′ ≤ C

∫
Sn−1

∫ ϕ(ω)

e−Mϕ(ω)

δ(rω)a
(∫ 1

e−M
|(∇∇ηu)(trω)|dt

t

)p
rn−1dr dω. (4.21)

Next we make the change of variables r = e−sϕ(ω), 0 < s < M , so δ(rω) = δ(e−sϕ(ω)ω) ≈
(1− e−s) ≈ s and dr ≈ ds, and thus

I ′ ≤ C

∫
Sn−1

∫ M

0

sa
(∫ 1

e−M
|(∇∇ηu)rad(te

−sϕ(ω)ω)|dt
t

)p
ds dω. (4.22)

Furthermore, if we let t = e−λ, 0 < λ < M , we get dt
t
≈ dλ and (4.22) becomes

I ′ ≤ C

∫
Sn−1

∫ M

0

sa
(∫ M

0

|(∇∇ηu)rad(e
−(λ+s)ϕ(ω)ω)| dλ

)p
ds dω

≤ C

∫
Sn−1

∫ 2M

0

sa
(∫ 2M

s

|(∇∇ηu)rad(e
−µϕ(ω)ω)| dµ

)p
ds dω, (4.23)
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where for the last inequality in (4.23) we made the change of variables: λ+s =: µ, t ∈ [0,M ].
At this point, we use Hardy’s inequality from Lemma 4.7 (here a > −1 is used) in order to
obtain

I ′ ≤
∫
Sn−1

∫ 2M

0

sp+a|(∇∇ηu)rad(e
−sϕ(ω)ω)|p ds dω

≤ C

∫
Ω\O

δ(X)p+a|(∇∇ηu)rad(X)|p dX. (4.24)

Since a > −1 and p > 0, we have p + a > −1 so Lemma 4.4 applies in concert with (4.24)
to give

I ′ ≤
∫

Ω

δ(X)p+a|(∇∇ηu)(X)|p dX

≤ C

∫
Ω

δ(X)a|(∇ηu)(X)|p dX. (4.25)

We note that for the last inequality in (4.25) we have employed Lemma 4.5 since ∇ηu is
harmonic.

In a similar fashion,

I ′′ ≤ C

∫
Ω

δ(X)a|u(X)|pdX. (4.26)

Because u is harmonic, we can repeat the same type of argument to obtain

∫
Ω

δ(X)a|u(X)|p dX ≤ C

∫
Ω

δ(X)a+p|(∇ηu)(X)|p dX +

∫
eO |u|

p dX. (4.27)

Since δ(X)a+p ≤ Cδ(X)a, the right-hand side above can be dominated by a term of the right
order (as far as (4.13) is concerned).

All in all, this proves the lemma in the case when 0 < p < 1. When 1 ≤ p < ∞, the
proof is simpler, in that the involvement of the radial maximal function is unnecessary. �

4.2 Besov and Triebel-Lizorkin spaces in Lipschitz domains

By Bp,q
s (Rn), F p,q

s (Rn), 0 < p, q ≤ ∞, s ∈ R, we denote the classical scales of Besov and
Triebel-Lizorkin spaces in the Euclidean space. See, e.g., [54], [48].

Next, given an arbitrary open subset Ω of Rn, we denote by f |Ω the restriction of a
distribution f in Rn to Ω. For 0 < p, q ≤ ∞ and s ∈ R, both Bp,q

s (Rn) and F p,q
s (Rn) are

spaces of (tempered) distributions, hence it is meaningful to define
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Ap,qs (Ω) := {f distribution in Ω : ∃ g ∈ Ap,qs (Rn) such that g|Ω = f},

‖f‖Ap,qs (Ω) := inf {‖g‖Ap,qs (Rn) : g ∈ Ap,qs (Rn), g|Ω = f}, f ∈ Ap,qs (Ω),
(4.28)

where A = B, or A = F . The existence of an universal extension operator for Besov and
Triebel-Lizorkin spaces in an arbitrary Lipschitz domain Ω ⊂ Rn has been solved established
by V. Rychkov in [49]. This allows transferring a number of properties of the Besov-Triebel-
Lizorkin spaces in the Euclidean space Rn to the setting of a bounded Lipschitz domain
Ω ⊂ Rn. Here, we only wish to mention a few of these properties. First,

Bp,min (p,q)
s (Ω) ↪→ F p,q

s (Ω) ↪→ Bp,max (p,q)
s (Ω) (4.29)

whenever 0 < p ≤ ∞, 0 < q < ∞, and s ∈ R. Second, if k is a nonnegative integer and
1 < p <∞, then

F p,2
k (Ω) = W k,p(Ω) := {f ∈ Lp(∂Ω) : ∂αf ∈ Lp(∂Ω), |α| ≤ k}, (4.30)

Third, if k ∈ N0 and 0 < s < 1, then

B∞,∞k+s (Ω) = Ck+s(Ω), (4.31)

where

Ck+s(Ω) :=
{
u ∈ Ck(Ω) : with ‖u‖Ck+s(Ω) <∞, where (4.32)

‖u‖Ck+s(Ω) :=
k∑
j=1

‖∇ju‖L∞(Ω) +
∑
|α|=k

sup
X 6=Y ∈Ω

|∂αu(X)− ∂αu(Y )|
|X − Y |s

}
.

Going further, for 0 < p, q ≤ ∞, s ∈ R, we set

Ap,qs,0(Ω) := {f ∈ Ap,qs (Rn) : supp f ⊆ Ω},
‖f‖Ap,qs,0(Ω) := ‖f‖Ap,qs (Rn), f ∈ Ap,qs,0(Ω),

(4.33)

where, as usual, either A = F and p < ∞ or A = B. Thus, Bp,q
s,0(Ω), F p,q

s,0 (Ω) are closed
subspaces of Bp,q

s,0(Rn) and F p,q
s,0 (Rn), respectively.

Finally, for 0 < p, q ≤ ∞ and s ∈ R, we introduce

Ap,qs,z(Ω) := {f distribution in Ω : ∃ g ∈ Ap,qs,0(Ω) with g|Ω = f},
‖f‖Ap,qs,z(Ω) := inf {‖g‖Ap,qs (Rn) : g ∈ Ap,qs,0(Ω), g|Ω = f}, f ∈ Ap,qs,z(Ω),

(4.34)

where, as before, A = F and p <∞ or A = B.
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If 1 < p, q <∞ and 1/p+ 1/p′ = 1/q + 1/q′ = 1, then

(
Ap,qs,z(Ω)

)∗
= Ap

′,q′

−s (Ω) if s > −1 + 1
p
, (4.35)(

Ap,qs (Ω)
)∗

= Ap
′,q′

−s,z(Ω) if s < 1
p
. (4.36)

Furthermore, for each s ∈ R and 1 < p, q <∞, the spaces Ap,qs (Ω) and Ap,qs,0(Ω) are reflexive.
There is yet another type of smoothness space which will play a significant role in this

paper. Specifically, for Ω ⊂ Rn Lipschitz domain, we set

◦
Ap,qs (Ω) := the closure of C∞0 (Ω) in Ap,qs (Ω), 0 < p, q ≤ ∞, s ∈ R, (4.37)

where, as usual, A = F or A = B. For every 0 < p, q <∞ and s ∈ R, we then have

Ap,qs,z(Ω) ↪→
◦

Ap,qs (Ω) ↪→ Ap,qs (Ω), continuously. (4.38)

Proposition 3.1 in [55] ensures that

◦
Ap,qs (Ω) = Ap,qs (Ω) = Ap,qs,z(Ω), A ∈ {F,B}, (4.39)

whenever 0 < p, q < ∞, max
(

1/p − 1, n(1/p − 1)
)
< s < 1/p, and min {p, 1} ≤ q < ∞ in

the case A = F .
The following useful extension by zero result appears in [55].

Proposition 4.9. Suppose that Ω is a bounded Lipschitz domain in Rn and assume that

0 < p, q ≤ ∞ and max
(

1/p− 1, n(1/p− 1)
)
< s. Then extension by zero defined as

f̃(X) :=

{
f(X), if X ∈ Ω,

0, if X ∈ Rn \ Ω,
(4.40)

induces a linear and bounded operator from Bp,q
s,z (Ω) to Bp,q

s,0(Ω) and, if p <∞, from F p,q
s,z (Ω)

to F p,q
s,0 (Ω).

Furthermore, if max
(

1/p − 1, n(1/p − 1)
)
< s < 1/p and 0 < p, q < ∞, this operator

also maps Bp,q
s (Ω) to Bp,q

s,0(Ω) and, if min {p, 1} ≤ q, F p,q
s (Ω) to F p,q

s,0 (Ω).

To continue, recall (4.37). We recall a useful characterization of the spaces in (4.37), estab-
lished in [36], building on the earlier work in [19].

Proposition 4.10. Let Ω be a bounded Lipschitz domain in Rn and assume that m ∈ N.
Also, suppose that n−1

n
< p <∞, (n− 1)(1/p− 1)+ < s < 1 and min {1, p} ≤ q <∞. Then

◦
F p,q
m−1+s+1/p(Ω) =

{
u ∈ F p,q

m−1+s+1/p(Ω) : Tr (∂αu) = 0 for |α| ≤ m− 1
}
. (4.41)
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Furthermore, a similar result is valid for the scale of Besov spaces. More specifically, if
m ∈ N, n−1

n
< p <∞, (n− 1)(1/p− 1)+ < s < 1 and 0 < q <∞, then

◦
Bp,q
m−1+s+1/p(Ω) =

{
u ∈ Bp,q

m−1+s+1/p(Ω) : Tr (∂αu) = 0 for |α| ≤ m− 1
}
. (4.42)

Recall (4.34). The result below is proved in [36], and extends earlier work in [19].

Proposition 4.11. Let Ω be a bounded Lipschitz domain in Rn. Then

◦
F p,q
m−1+s+1/p(Ω) = F p,q

m−1+s+1/p,z(Ω) (4.43)

provided m ∈ N0, n−1
n
< p <∞, (n− 1)(1/p− 1)+ < s < 1 and min {1, p} ≤ q <∞.

Furthermore,

◦
Bp,q
m−1+s+1/p(Ω) = Bp,q

m−1+s+1/p,z(Ω) (4.44)

whenever m ∈ N0, n−1
n
< p <∞, (n− 1)(1/p− 1)+ < s < 1 and 0 < q <∞.

We now record a result to the effect that distributions in Besov and Triebel-Lizorkin
spaces supported on Lipschitz surfaces actually vanish if the amount of smoothness exhibited
on these scales is not too small.

Proposition 4.12. Let Ω be a bounded Lipschitz domain in Rn. Then

u ∈ Bp,q
s (Rn) and suppu ⊆ ∂Ω =⇒ u ≡ 0 in Rn (4.45)

whenever

0 < p, q ≤ ∞, max
(

1
p
− 1 , n

(
1
p
− 1
))

< s. (4.46)

As a consequence, if s, p, q are as in (4.46) and O is an open subset of Ω, then

w ∈ Bp,q
s,z (Ω) and suppw ⊆ O =⇒ w

∣∣∣
O
∈ Bp,q

s,z (O), (4.47)

plus a natural estimate.
Finally, similar conclusions are valid for the scale of Triebel-Lizorkin spaces F p,q

s (Rn) if,
in addition, p <∞.
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Proof. When Ω is a smooth domain, a proof of (4.45), as well as its counterpart in Triebel-
Lizorkin spaces, can be found on pp. 45-46 of [54]. However, an inspection reveals that the
argument continues to hold for Lipschitz domains. See also the discussion in [55].

Consider next w as in the left side of (4.47). Then w = f |Ω for some f ∈ Bp,q
s (Rn) with

supp f ⊆ Ω. Since suppw ⊆ O, it follows that supp f ⊆ O ∪ ∂Ω. However, due to (4.45)
(and localization), this self-improves to supp f ⊆ O. Thus, since w|O = f |O, the conclusion
in (4.47) follows. �

Our next result models the behavior of volume potentials, associated with homogeneous,
constant coefficient elliptic differential operators in Rn. A proof appears in [24].

Proposition 4.13. If L is a homogeneous, constant coefficient, elliptic operator of order m
and φ, ψ ∈ C∞0 (Rn), then T := φL−1ψ, where L−1 is regarded as a classical pseudodifferential
operator of order −m, has the following mapping properties:

T : F p,q
α (Rn) −→ F p,q

α−m(Rn) (4.48)

boundedly whenever 0 < p <∞, and

T : Bp,q
α (Rn) −→ Bp,q

α−m(Rn) (4.49)

boundedly, whenever 0 < p ≤ ∞.

Denote by Lp,q(Ω), 0 < p, q ≤ ∞, the Lorentz scale of spaces in some open subset Ω of
Rn; cf. [3].

Lemma 4.14. If Ω is a Lipschitz domain in Rn then

Lr,q(Ω) ↪→ Bp,q
s (Ω) provided 1

r
= 1

p
− s

n
,

whenever p > r > 1 and 0 < q ≤ ∞.
(4.50)

Proof. Assume that p > r > 1, s ∈ R, 0 < q ≤ ∞, and select r0, r1, s0, s1 and θ ∈ (0, 1)
such that

1 < r0 < r < r1 < p, 1
r

= 1−θ
r0

+ θ
r1

and s = (1− θ)s0 + θs1. (4.51)

Then, according to (4.29)-(4.30), for j ∈ {0, 1} we have

Lrj(Ω) ↪→ Bp,qj
sj

(Ω) granted that qj ≥ rj and 1
rj

= 1
p
− sj

n
. (4.52)

Since by real interpolation (Lr0(Ω), Lr1(Ω))θ,q = Lr,q(Ω), the inclusion in (4.50) is a conse-
quence of (4.51)-(4.52) and the fact that (Bp,q0

s0
(Ω), Bp,q1

s1
(Ω))θ,q = Bp,q

s (Ω). �
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4.3 Solutions of elliptic PDE’s on Besov-Triebel-Lizorkin spaces

Throughout this subsection, we let L be a homogeneous, elliptic differential operator of
even order with (possibly matrix-valued) constant coefficients. Also, fix a Lipschitz domain
Ω ⊂ Rn and denote by KerL the space of functions u satisfying Lu = 0 in Ω.

Denote by (·, ·)θ,p and [·, ·]θ, respectively, the real and complex method of interpolation.
The theorem below appears in [30], [24].

Theorem 4.15. Consider an elliptic, homogeneous, constant coefficient differential operator
L and fix a bounded Lipschitz domain Ω in Rn. Also, assume that 0 < q0, q1, q ≤ ∞,
α0, α1 ∈ R, α0 6= α1, 0 < θ < 1, and set α = (1− θ)α0 + θα1. Then, if 0 < p <∞,

(
F p,q0
α0

(Ω) ∩KerL , F p,q1
α1

(Ω) ∩KerL
)
θ,q

= Bp,q
α (Ω) ∩KerL, (4.53)

and if 0 < p ≤ ∞,

(
Bp,q0
α0

(Ω) ∩KerL , Bp,q1
α1

(Ω) ∩KerL
)
θ,q

= Bp,q
α (Ω) ∩KerL. (4.54)

Let 0 < p0, p1 < ∞, 0 < q0, q1 ≤ ∞, α0, α1 ∈ R, 0 < θ < 1, α = (1 − θ)α0 + θα1,
1
p

= 1−θ
p0

+ θ
p1

and 1
q

= 1−θ
q0

+ θ
q1

. Then

[
F p0,q0
α0

(Ω) ∩KerL , F p1,q1
α1

(Ω) ∩KerL
]
θ

= F p,q
α (Ω) ∩KerL. (4.55)

Finally, if α0, α1 ∈ R, α0 6= α1, 0 < p0, p1, q0, q1 ≤ ∞ and either p0 +q0 <∞ or p1 +q1 <∞,
then

[
Bp0,q0
α0

(Ω) ∩KerL , Bp1,q1
α1

(Ω) ∩KerL
]
θ

= Bp,q
α (Ω) ∩KerL, (4.56)

where 0 < θ < 1, α = (1− θ)α0 + θα1, 1
p

= 1−θ
p0

+ θ
p1

and 1
q

= 1−θ
q0

+ θ
q1

.

Recall that given j ∈ N0, ∇j stands for vector of all mixed-order partial derivatives
of order j. Then, for 0 < p ≤ ∞ and s ∈ R, denote by Hp

s(Ω;L) the space of functions
u ∈ KerL subject to the size/smoothness condition

‖u‖Hps(Ω;L) := ‖δ〈s〉−s|∇〈s〉u|‖Lp(Ω) +

〈s〉−1∑
j=0

‖∇ju‖Lp(Ω) <∞. (4.57)

Here and elsewhere, given s ∈ R we set

〈s〉 :=


s if s ∈ N0,

[s] + 1 if s > 0, s /∈ N,
0 if s < 0,

(4.58)
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where [·] is the integer-part function. That is, 〈s〉 is the smallest nonnegative integer greater
than or equal to s. When Ω is bounded, an equivalent quasi-norm on Hp

α(Ω;L) is given by

‖δ〈α〉−α|∇〈α〉u|‖Lp(Ω) + sup
x∈O
|u(x)|, (4.59)

where O denotes some fixed compact subset of Ω.

Theorem 4.16. Let L be as above and let Ω be a bounded Lipschitz domain in Rn. Then
for each s ∈ R and p, q ∈ (0,∞),

Hp
s(Ω;L) = F p,q

s (Ω) ∩KerL. (4.60)

Also, corresponding to p =∞,

H∞k+s(Ω;L) = B∞,∞k+s (Ω) ∩KerL (4.61)

for each k ∈ N0 and s ∈ (0, 1). As a corollary,

F p,q
s (Ω) ∩KerL = Bp,p

s (Ω) ∩KerL (4.62)

whenever s ∈ R and p, q ∈ (0,∞).

For 1 < p, q <∞, s > 0, this has been proved in [19] when L = ∆ and in [1] when L = ∆2.
The present version has been established in [30], [24], [36].

Proposition 4.17. Assume that Ω ⊂ Rn is a bounded Lipschitz domain which is star-
like with respect to the origin. Also, fix 0 < p, q < ∞ and α > −1. Then there exists
C = C(Ω, α, p, q) > 0 such that if u is a harmonic function in Ω for which u(0) = 0 and
∇ηu ∈ Bp,q

α (Ω) then u ∈ Bp,q
α+1(Ω) and

‖u‖Bp,qα+1(Ω) ≤ C‖∇ηu‖Bp,qα (Ω). (4.63)

Furthermore, if u is a harmonic function in Ω for which u(0) = 0 and ∇ηu ∈ F p,q
α (Ω)

then u ∈ F p,q
α+1(Ω) and

‖u‖F p,qα+1(Ω) ≤ C‖∇ηu‖F p,qα (Ω). (4.64)

Proof. Note that if O is a relatively compact neighborhood of 0 in Ω, and if u is a harmonic
function in Ω, then by Theorem 4.16 and Lemma 4.8
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‖u‖Bp,pα+1(Ω) ≤ C
(∫

Ω

δ(〈α〉−α)p|∇〈α〉+1u|p dX
)1/p

+ C sup
O
|u|

≤ C
(∫

Ω

δ(〈α〉−α)p|∇η∇〈α〉u|p dX
)1/p

+ C sup
O
|u|

≤ C
(∫

Ω

δ(〈α〉−α)p|∇〈α〉∇ηu|p dX
)1/p

+C
(∫

Ω

δ(〈α〉−α)p|∇〈α〉u|p dX
)1/p

+ C sup
O
|u|

≤ C‖∇ηu‖Bp,pα (Ω) + C‖u‖Bp,pα (Ω). (4.65)

If α = k − 1 + s with k nonnegative integer and 0 < s ≤ 1, then iterating the above scheme
then yields

‖u‖Bp,pα+1(Ω) ≤ C‖∇ηu‖Bp,pα (Ω) + C‖u‖Bp,ps−1(Ω). (4.66)

On the other hand, since u is harmonic, (4.60) with p = q gives

‖u‖Bp,ps−1(Ω) ≤ C‖δ1−su‖Lp(Ω) + C sup
O
|u|. (4.67)

Then Lemma 4.6, Lemma 4.8 and interior estimates allow us to write

‖δ1−su‖Lp(Ω) ≤ C‖δ2−s|∇u|‖Lp(Ω) + C sup
O
|u|

≤ C‖δ2−s|∇ηu|‖Lp(Ω) + C sup
O
|u|

≤ C‖δ2−s+〈α〉|∇〈α〉∇ηu|‖Lp(Ω) + C sup
O
|u|

≤ C‖δ〈α〉−α|∇〈α〉∇ηu|‖Lp(Ω) + C sup
O
|u|

≤ C‖∇ηu‖Bp,pα (Ω) + C sup
O
|u|, (4.68)

since, given that Ω is bounded, δ2−s+〈α〉 ≤ Cδ〈α〉−α. All together, the above estimates give
that

‖u‖Bp,pα+1(Ω) ≤ C‖∇ηu‖Bp,pα (Ω) + C sup
O
|u|. (4.69)

At this stage, proceeding as in (4.14)-(4.16) and also making use of interior estimates, for
each small ε > 0 it is possible to estimate supO |u| ≤ ε‖u‖Lp(Ω) + Cε‖∇ηu‖Lp(Ω), uniformly
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for harmonic functions u satisfying u(0) = 0. Given that α > −1, the term ε‖u‖Lp(Ω) can
then be absorbed into ‖u‖Bp,pα+1(Ω), whereas ‖∇ηu‖Lp(Ω) combines well with ‖∇ηu‖Bp,pα (Ω). The

resulting estimate is then precisely (4.63) with p = q.
In turn, (4.63) with p = q shows that if α > −1 and 0 < p <∞ then

∇η : {u ∈ Bp,p
α+1(Ω) ∩Ker ∆ : u(0) = 0} −→ {u ∈ Bp,p

α (Ω) ∩Ker ∆ : u(0) = 0} (4.70)

isomorphically. Interpolating by the real method (cf. Theorem 4.15) then yields that

∇η : {u ∈ Bp,q
α+1(Ω) ∩Ker ∆ : u(0) = 0} −→ {u ∈ Bp,q

α (Ω) ∩Ker ∆ : u(0) = 0} (4.71)

isomorphically, whenever α > −1 and 0 < p, q < ∞. From this, (4.63) follows in full
generality. Finally, (4.64) is a consequence of (4.63) and Theorem 4.16.

4.4 Traces and extensions

Here we discuss a number of trace results relevant for the present work. First, we record the
following theorem from [30], which extends work done in [19].

Theorem 4.18. Let Ω be a Lipschitz domain in Rn and assume that the indices p, s satisfy
n−1
n
< p ≤ ∞ and (n− 1)(1

p
− 1)+ < s < 1. Then the following hold:

(i) The restriction to the boundary extends to a linear, bounded operator

Tr : Bp,q

s+ 1
p

(Ω) −→ Bp,q
s (∂Ω) for 0 < q ≤ ∞. (4.72)

Moreover, for this range of indices, Tr is onto and has a bounded right inverse

Ex : Bp,q
s (∂Ω) −→ Bp,q

s+ 1
p

(Ω). (4.73)

(ii) Similar considerations hold for

Tr : F p,q

s+ 1
p

(Ω) −→ Bp,p
s (∂Ω) (4.74)

with the convention that q =∞ if p =∞. More specifically, Tr in (4.74) is linear, bounded,
operator which has a linear, bounded right inverse

Ex : Bp,p
s (∂Ω) −→ F p,q

s+ 1
p

(Ω). (4.75)

To state our next result, recall (2.71)-(2.72).
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Theorem 4.19. Let Ω be a Lipschitz domain in Rn and assume that the indices p, s satisfy
n−1
n
< p ≤ ∞ and (n− 1)(1

p
− 1)+ < s < 1. Then the following hold:

(i) The mapping

C1(Ω̄) 3 u 7→
(
u|∂Ω, (∂1u)|∂Ω, ..., (∂nu)|∂Ω

)
∈ C0(∂Ω)⊕ · · · ⊕ C0(∂Ω) (4.76)

extends to a bounded operator

Tr# : Bp,q

s+ 1
p

+1
(Ω) −→ WA

(
Bp,q
s (∂Ω)

)
for 0 < q ≤ ∞. (4.77)

Moreover, for this range of indices, Tr∗ is onto and has a bounded right inverse

Ex# : WA
(
Bp,q
s (∂Ω)

)
−→ Bp,q

s+ 1
p

+1
(Ω). (4.78)

(ii) Similar considerations hold for

Tr# : F p,q

s+ 1
p

+1
(Ω) −→ WA

(
Bp,p
s (∂Ω)

)
(4.79)

with the convention that q =∞ if p =∞. More specifically, Tr in (4.74) is linear, bounded,
operator which has a linear, bounded right inverse

Ex# : WA
(
Bp,p
s (∂Ω)

)
−→ F p,q

s+ 1
p

(Ω). (4.80)

The case when 1 ≤ p = q ≤ ∞ for the Besov scale and 1 < p < ∞, q = 2 for the Triebel-
Lizorkin scale has been dealt with in [1]. In the current formulation, this is a particular
case of a more general trace result appearing in [36]. The same comments apply to our next
theorem, stated below.

Theorem 4.20. Let Ω be a bounded Lipschitz domain in Rn and assume that s0, s1 ∈ R and
0 < p, q, q0, q1 ≤ ∞ are such that (n − 1)

(
1
p
− 1
)

+
< s0 6= s1 < 1 Then, with 0 < θ < 1,

s = (1− θ)s0 + θs1,

(
WA
(
Bp,q0
s0

(∂Ω)
)
, WA

(
Bp,q1
s1

(∂Ω)
))

θ,q
= WA

(
Bp,q
s (∂Ω)

)
. (4.81)

Furthermore, if 0 < pi, qi ≤ ∞, i = 0, 1, with min{q0, q1} < ∞ and s0, s1 ∈ R are such that
(n− 1)

(
1
pi
− 1
)

+
< si < 1, i = 0, 1, then[
WA
(
Bp0,q0
s0

(∂Ω)
)
, WA

(
Bp1,q1
s1

(∂Ω)
)]

θ
= WA

(
Bp,q
s (∂Ω)

)
, (4.82)

where 0 < θ < 1, s := (1− θ)s0 + θs1, 1
p

:= 1−θ
p0

+ θ
p1

and 1
q

:= 1−θ
q0

+ θ
q1

.
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Finally, if 1 < p < ∞, 0 < q ≤ ∞, θ ∈ (0, 1), s0, s1 ∈ R, s0 6= s1 and we set
s = (1− θ)s0 + θs1, then

(
WA
(
F p,q0
s0

(∂Ω)
)
, WA

(
F p,q1
s1

(∂Ω)
))

θ,q
= WA

(
Bp,q
s (∂Ω)

)
(4.83)

if either 2 ≤ q0, q1 ≤ ∞ and 0 ≤ s0, s1 ≤ 1, or min {p, 2} ≤ q0, q1 ≤ ∞ and 0 < s0, s1 < 1.

4.5 Singular integral operators on Besov-Triebel-Lizorkin spaces

In this subsection we discuss results describing mapping properties on Besov and Triebel-
Lizorkin spaces of integral operators modeled upon the harmonic layer potentials. The first
two propositions are proved in [30], and mimic the behavior of the double and single harmonic
layer, respectively.

Proposition 4.21. Let Ω be a Lipschitz domain in Rn and consider the integral operator

Tf(X) =

∫
∂Ω

k(X, Y )f(Y ) dσ(Y ), X ∈ Ω, (4.84)

satisfying the following conditions:

(1) T1 = const, (4.85)

(2) |∇j
Xk(X, Y )| ≤ C|X − Y |−(n+j−1), j = 1, 2, ..., N, (4.86)

for some positive integer N . Then, with δ := dist (·, ∂Ω),

‖δj−
1
p
−s|∇jTf |‖Lp(Ω) +

j−1∑
i=0

‖∇iTf‖Lp(Ω) ≤ C‖f‖Bp,ps (∂Ω), (4.87)

granted that n−1
n
< p ≤ ∞ and (n− 1)(1

p
− 1)+ < s < 1.

Proposition 4.22. Let Ω be a bounded Lipschitz domain in Rn, and consider the integral
operator

Rf(X) :=

∫
∂Ω

k(X, Y )f(Y ) dσ(Y ), X ∈ Ω, (4.88)

whose kernel satisfies the estimates

|∇i
X∇

j
Y k(X, Y )| ≤ C|X − Y |−(n−2+i+j), j = 0, 1, 1 ≤ i ≤ N, (4.89)
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for some positive integer N . Also, recall that δ(X) := dist (X, ∂Ω). Then

‖δi−
1
p
−s|∇iRf |‖Lp(Ω) +

i−1∑
j=0

‖∇jRf‖Lp(Ω) ≤ C‖f‖Bp,ps−1(∂Ω), i = 1, 2, ..., N, (4.90)

granted that n−1
n
< p ≤ ∞ and (n− 1)(1

p
− 1)+ < s < 1.

Finally, we consider the action of singular integral operators mapping from the Lebesgue
scale into Besov spaces.

Proposition 4.23. Assume that Ω is a bounded Lipschitz domain in Rn, and consider a
classical pseudodifferential operator Q(X,D) of order −1−m, with m ∈ N, whose principal
symbol, q(X, ξ), is even in ξ if m is odd, and is odd in ξ if m is even. Let k be the Schwartz
kernel of ∇XQ(X,D), and define

Qf(X) :=

∫
∂Ω

k(X − Y, Y )f(Y ) dσ(Y ), X ∈ Ω. (4.91)

Then, with a ∨ b := max {a, b},

Q : Lp(∂Ω) −→ Bp,p∨2
m−1+1/p(Ω) (4.92)

is a bounded operator, for each p ∈ (1,∞).

Proof. The result corresponding to m = 1 has been proved in [37]. Then matters can be
reduced to this case working with ∇m−1

X Q(X,D) in place of Q(X,D), and using a lifting
result to the effect that, for any distribution u in Ω,

∂αu ∈ Ap,qs (Ω), ∀α : |α| = k =⇒ u ∈ Ap,qs+k(Ω), (4.93)

plus natural estimates, granted that 1 < p, q < ∞, k ∈ N and s ∈ R (with the convention
that A ∈ {B,F}). See [35]. �

4.6 Stability and extrapolation on complex interpolation scales

Fix m ∈ N and let U ⊂ Rm be a convex set. Call a family of analytically convex quasi-
Banach spaces {Xw}w∈U a complex interpolation scale (indexed by U) if for every θ ∈ (0, 1)
there holds

[
Xw0 , Xw1

]
θ

= Xwθ , where wθ := (1− θ)w0 + θw1. (4.94)

In what follows, we shall assume that there is a bound on the moduli of concavity for the
spaces Xw, which is uniform in w ∈ U , and that the ∩w∈UXw is rich; see the discussion in
[23]. Important examples of complex interpolation scales for us here are:
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F p,q
s (Ω) and F p,q

s,0 (Ω), indexed by s ∈ R, 0 < p <∞, 0 < q ≤ ∞, (4.95)

Bp,q
s (Ω) and Bp,q

s,0(Ω), indexed by s ∈ R, 0 < p <∞, 0 < q <∞, (4.96)

where Ω is either Rn, or a bounded Lipschitz domain in Rn. Observe that by Proposition 4.12,
the restriction operator induces an isomorphism

RΩ : Ap,qs,0(Ω) −→ Ap,qs,z(Ω), (4.97)

if A ∈ {B,F}, provided (4.46) holds, with the convention that p < ∞ if A = F . From this
and (4.95)-(4.96), we may conclude that

Ap,qs,z(Ω), for 0 < p <∞, 0 < q ≤ ∞, s > max
(

1
p
− 1 , n

(
1
p
− 1
))
, (4.98)

(with q < ∞ if A = B) are also complex interpolation scales. Another useful result of this
nature is contained in the proposition below.

Proposition 4.24. Let Ω ⊂ Rn be a bounded Lipschitz domain. Then the family of spaces

{
u ∈ F p,q

s+ 1
p

+1
(Ω) : Tr#u = 0 on ∂Ω

}
, (4.99)

indexed by 0 < p, q <∞, (n− 1)(1
p
− 1)+ < s < 1, is a complex interpolation scale.

Furthermore, a similar result is valid in the context of Besov spaces.

As a preliminary matter, we isolate an abstract interpolation result used in the proof of
Proposition 4.24.

Lemma 4.25. Let Xi, Yi, Zi, i = 0, 1, be quasi-Banach spaces such that X0 ∩X1 is dense
in both X0 and X1, and similarly for Z0, Z1. Suppose that Yi ↪→ Zi, i = 0, 1 and there exists
a linear operator D such that D : Xi → Zi boundedly for i = 0, 1. Define the spaces

Xi(D) := {u ∈ Xi : Du ∈ Yi}, i = 0, 1, (4.100)

equipped with the graph norm, i.e. ‖u‖Xi(D) := ‖u‖Xi + ‖Du‖Yi, i = 0, 1. Finally, suppose
that there exist continuous linear mappings G : Zi → Xi and K : Zi → Yi with the property
D ◦G = I +K on the spaces Zi for i = 0, 1. Then, for each 0 < θ < 1 and 0 < q ≤ ∞,

(X0(D), X1(D))θ,q = {u ∈ (X0, X1)θ,q : Du ∈ (Y0, Y1)θ,q}. (4.101)

Furthermore, if the spaces X0 +X1 and Y0 + Y1 are analytically convex, then

[X0(D), X1(D)]θ = {u ∈ [X0, X1]θ : Du ∈ [Y0, Y1]θ}, θ ∈ (0, 1). (4.102)
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In the context of complex interpolation method for Banach spaces, this appeared in [27].
The present formulation is taken from [24].

Proof of Proposition 4.24. Fix 0 < pi, qi <∞, (n−1)( 1
pi
−1)+ < si < 1, i = 0, 1, and assume

that θ ∈ (0, 1). Set 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1, s = (1 − θ)s0 + θs1.
The idea now is to implement Lemma 4.25 for the spaces

Xi := F pi,qi
si+

1
pi

+1
(Ω), Zi := WA

(
Bpi,pi
si

(∂Ω)
)
, Yi := 0, i = 0, 1, (4.103)

and operators

D := Tr#, G := Ex#, K := 0. (4.104)

Since, by Theorem 4.19, the identity D ◦ G = I + K is verified, (4.102) then readily gives
the desired conclusion. �

Proposition 4.26. Assume that {Xw}w∈U , {Yw}w∈U are two complex interpolation scales,
indexed by a common open, convex set U ⊂ Rm. Also, let T be a linear operator mapping
Xw boundedly into Yw, for each w ∈ U , and denote by Tw this manifestation of T . Set
O := {w ∈ U : Tw is invertible}.

Then O is open and, if O′ is a convex subset of O, the inverses T−1
w0

and T−1
w1

agree on
Yw0 ∩ Yw1 for every w0, w1 ∈ O′.

Proof. The case m = 1 is discussed in [23], [24]. When m ≥ 1, the idea is to make suitable
use of the one-dimensional results on line segments L ⊂ U . Since the latter come with
estimates that are uniform with respect to the direction of L, the desired results follow. �

4.7 Envelopes of non-locally convex spaces

The results in this subsection are from [34], [30]. Let X be a quasi-normed space and, for
each 0 < p ≤ 1, let BX,p be the absolutely p-convex hull of the unit ball in X, i.e.,

BX,p :=
{ n∑
j=1

λjaj : aj ∈ X, ‖aj‖X ≤ 1,
n∑
j=1

|λj|p ≤ 1, n ∈ N
}
. (4.105)

Set

‖|x|‖p := inf
{
λ > 0 : x/λ ∈ BX,p

}
. (4.106)

Then, for each quasi-normed space X whose dual separates its points, we denote by Ep(X)
the p-envelope of X, defined as the completion of X in the quasi-norm ‖| · |‖p. The case
p = 1 corresponds to taking the Banach envelope, i.e. the minimal enlargement of the space
in question to a Banach space; cf. [25] for a discussion.
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Two results pertaining to this concept are going to be of importance for us here. The
first one essentially asserts that for a linear operator, being bounded, and being onto are
stable properties under taking envelopes.

Proposition 4.27. Let X, Y be two quasi-normed spaces and let T : X −→ Y be a bounded,
linear operator. Then, for each 0 < p ≤ 1, this extends to a bounded, linear operator
T̂ : Ep(X) −→ Ep(Y ). Furthermore,

T : X −→ Y onto =⇒ T̂ : Ep(X) −→ Ep(Y ) onto, and (4.107)

T : X −→ Y isomorphism =⇒ T̂ : Ep(X) −→ Ep(Y ) isomorphism. (4.108)

The second result explicitly identifies the envelopes of Besov and Hardy spaces on boundaries
of Lipschitz domains.

Theorem 4.28. Let Ω ⊂ Rn be a bounded Lipschitz domain, n−1
n

< p, q ≤ p∗ ≤ 1 and
assume (n− 1)(1

p
− 1) < s < 1. Then

Ep∗(Bp,q
s−1(∂Ω)) = Bp∗,p∗

s∗−1 (∂Ω), where s∗ := s+ (n− 1)( 1
p∗
− 1

p
), (4.109)

Ep∗(Bp,q
s (∂Ω)) = Bp∗,p∗

s∗ (∂Ω), where s∗ := s+ (n− 1)( 1
p∗
− 1

p
), (4.110)

Ep∗(hpat(∂Ω)) = Bp∗,p∗

s∗ (∂Ω), where s∗ := (n− 1)( 1
p∗
− 1

p
), (4.111)

Ep∗(h1,p
at (∂Ω)) = Bp∗,p∗

s∗ (∂Ω), where s∗ := 1 + (n− 1)( 1
p∗
− 1

p
). (4.112)

5 Main results

5.1 The inhomogeneous problem

For n−1
n
< p ≤ ∞, 0 < q ≤ ∞ and (n− 1)

(
1
p
− 1
)

+
< s < 1, set

Bp,q
s−1,0(∂Ω) := {f ∈ Bp,q

s−1(∂Ω) : 〈f, 1〉 = 0}. (5.1)

Our first theorem in this subsection is a variant of Theorem 3.19 at the level of Besov spaces.

Theorem 5.1. Let Ω ⊂ R3 be a bounded Lipschitz domain which is star-like with respect
to the origin. Then there exists ε ∈ (0, 1) such that the operator Φ̂ in (3.107) extends
isomorphically as

Φ̂ :
[
Bp,q
s (∂Ω)/R

]
⊕Bp,q

s−1(∂Ω)⊕Bp,q
s−1,0(∂Ω)

−→
[
Bp,q
s (∂Ω)/〈 |η| 〉

]
⊕Bp,q

s−1,0(∂Ω)⊕Bp,q
s−1(∂Ω) (5.2)
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whenever 0 < q ≤ ∞ and

2
2+ε

< p < 1, 1− ε < s < 1, 2
(

1
p
− 1
)
< s− 1 + ε. (5.3)

Proof. A combination of Theorem 3.19, Proposition 4.27 and Theorem 4.28 gives that the
operator in (5.2) is an isomorphism when s, p are as in (5.3) and q = p. The extension to
the case when 0 < q ≤ ∞ then follows from this and real interpolation. �

Once Theorem 5.1 has been established, we are prepared to deal with the inhomogeneous
problem associated with (3.28), when the data is selected from Besov and Triebel-Lizorkin
spaces.

Theorem 5.2. Let Ω ⊂ R3 be a bounded Lipschitz domain which is star-like with respect to
the origin. Then there exists ε = ε(Ω) > 0 such that if 0 < q ≤ ∞ and s, p are as in (5.3)
then the problem



∆2u = G ∈ Bp,q

s+ 1
p
−3

(Ω) in Ω,

ηj
|η|

Tr (∂ju) = g0 ∈ Bp,q
s (∂Ω),

∂τjk

( ηk
|η|

Tr (∂ju)
)

= g1 ∈ Bp,q
s−1,0(∂Ω),

u ∈ Bp,q

s+ 1
p

+1
(Ω),

∫
Ω
u(X) dX = 0,

(5.4)

has a unique solution. This solution can be represented as

u(X) = G#(X) +H(X)− 2Γ(∇ηSf)(X) + C1 + C2|X|2, X ∈ Ω, (5.5)

where

G# ∈ Bp,q

s+ 1
p

+1
(Ω) is such that ∆2G# = G in Ω, (5.6)

C1, C2 ∈ R are suitably selected constants, and H is as in (3.66)-(3.67) for a choice of
f1 ∈ Bp,q

s (∂Ω), f2 ∈ Bp,q
s−1(∂Ω), and f ∈ Bp,q

s−1,0(∂Ω) such that

([f1], f2, f) = Φ̂−1
([
g0 − ηj

|η|Tr (∂jG#)
]
, g1 − ∂τjk

(
ηk
|η|Tr (∂jG#)

)
, 0
)
. (5.7)

Furthermore, there exists C > 0, independent G, g0, g1 such that

‖u‖Bp,q
s+ 1

p+1
(Ω) ≤ C

(
‖G‖Bp,q

s+ 1
p−3

(Ω) + ‖g0‖Bp,qs (∂Ω) + ‖g1‖Bp,qs−1(∂Ω)

)
. (5.8)
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Finally, similar results hold for the version of (5.4) with a right-hand side in Triebel-
Lizorkin spaces, i.e., for



∆2u = G ∈ F p,q

s+ 1
p
−3

(Ω) in Ω,

ηj
|η|

Tr (∂ju) = g0 ∈ Bp,p
s (∂Ω),

∂τjk

( ηk
|η|

Tr (∂ju)
)

= g1 ∈ Bp,p
s−1,0(∂Ω),

u ∈ F p,q

s+ 1
p

+1
(Ω),

∫
Ω
u(X) dX = 0.

(5.9)

Proof. Existence for (5.4) follows as in the proof of Theorem 3.6, making use of Theorem 5.1,
as soon as we show that the function u in (5.5) belongs to Bp,q

s+ 1
p

+1
(Ω). To show that H ∈

Bp,q

s+ 1
p

+1
(Ω) we use the fact that

D : Bp,q
s (∂Ω) −→ Bp,q

s+ 1
p

(Ω), S : Bp,q
s−1(∂Ω) −→ Bp,q

s+ 1
p

(Ω) (5.10)

are bounded operators in order to write

f1 ∈ Bp,q
s (∂Ω), f2 ∈ Bp,q

s−1(∂Ω) =⇒ h ∈ Bp,q

s+ 1
p

(Ω) =⇒ ∇ηH ∈ Bp,q

s+ 1
p

(Ω). (5.11)

From this and Proposition 4.17, we then infer that H ∈ Bp,q

s+ 1
p

+1
(Ω), as desired. Furthermore,

f ∈ Bp,q
s−1(∂Ω) =⇒ ∇ηSf ∈ Bp,q

s+ 1
p
−1

(Ω) =⇒ Γ(∇ηSf) ∈ Bp,q

s+ 1
p

+1
(Ω), (5.12)

by Proposition 4.9 and Proposition 4.13 (alternatively, one can use the representation (2.145)
and the mapping properties of the operators in the right-hand side of that identity). Com-
bining these facts we may eventually conclude that u ∈ Bp,q

s+ 1
p

+1
(Ω).

To prove uniqueness, it suffices to observe that if s, p are as in (5.3) then

Bp,q
s (∂Ω) ↪→ B1,1

α (∂Ω), Bp,q
s−1(∂Ω) ↪→ B1,1

α−1(∂Ω), Bp,q

s+ 1
p

+1
(∂Ω) ↪→ B1,1

α+2(∂Ω) (5.13)

for some α ∈ (0, 1) near 1 so, consequently, the uniqueness result from [1] applies. Finally,
the arguments for the problem (5.9) are similar. �

Next, we discuss the inhomogeneous version of (3.18) on Besov-Triebel-Lizorkin spaces
in three-dimensional star-like Lipschitz domains. This can be thought of as the local version
on Theorem 1.1.
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Theorem 5.3. Suppose that Ω ⊂ R3 is a bounded Lipschitz domain which is star-like with
respect to the origin. Then there exists ε = ε(Ω) > 0 with the following property. Assume
that 0 < q ≤ ∞ and that s, p are such that either of the following two conditions

(I) : 0 ≤ 1
p
< s

2
+ 1+ε

2
and 0 < s < ε,

(II) : − ε
2
< 1

p
− s

2
< 1+ε

2
and ε ≤ s < 1,

(5.14)

holds. Then the problem


∆2u = G ∈ Bp,q

s+ 1
p
−3

(Ω),

Tru = f0 ∈ Bp,q
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,q
s (∂Ω), 1 ≤ j ≤ 3,

(5.15)

where, necessarily,

ḟ := (f0, f1, f2, f3) satisfies the compatibility conditions in (2.21), (5.16)

has a unique solution u ∈ Bp,q

s+ 1
p

+1
(Ω). This satisfies

‖u‖Bp,q
s+ 1

p+1
(Ω) ≤ C

(
‖G‖Bp,q

s+ 1
p−3

(Ω) +
3∑
j=0

‖fj‖Bp,qs (∂Ω)

)
, (5.17)

for some finite constant C = C(Ω, s, p) > 0.
Furthermore, similar results are valid for the version of the above boundary problem

phrased on Triebel-Lizorkin spaces (with p, q <∞), that is, for


∆2u = G ∈ F p,q

s+ 1
p
−3

(Ω),

Tru = f0 ∈ Bp,p
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,p
s (∂Ω), 1 ≤ j ≤ 3,

(5.18)

where u ∈ F p,q

s+ 1
p

+1
(Ω) and, as before, (5.16) holds.

Proof. Let P∆2 denote the Poisson integral operator for the bi-Laplacian. That is, given
a Whitney array ḟ = (f0, f1, ..., fn) on ∂Ω, we let P∆2 ḟ stand for the solution u of the
boundary value problem (3.18). Then, using Theorem 3.1 and Proposition 3.2, we have that

P∆2 : WA
(
Lp(∂Ω)

)
−→ Bp,p∨2

1+ 1
p

(Ω) ∩Ker ∆2 isomorphically ∀ p ∈ (2− ε,∞). (5.19)

Also, by Theorem 3.6 and Proposition 3.4, we have
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P∆2 : WA
(
Lp1(∂Ω)

)
−→ Bp,p∨2

2+ 1
p

(Ω) ∩Ker ∆2 isomorphically ∀ p ∈ (1, 2 + ε). (5.20)

Thus, via real interpolation (cf. (4.83) and (4.54)), we obtain that

P∆2 : WA
(
Bp,q
s (∂Ω)

)
−→ Bp,q

1+s+ 1
p

(Ω) ∩Ker ∆2 is an isomorphism

whenever 2− ε < p < 2 + ε, 0 < q <∞, and 0 < s < 1.
(5.21)

This portion of the argument is valid in all space dimensions. Consider next the case
when n = 3. Given the result in Theorem 5.2 and Proposition 3.4, we have

P∆2 : WA
(
Bp,q
s (∂Ω)

)
−→ Bp,q

1+s+ 1
p

(Ω) ∩Ker ∆2 is an isomorphism if

2
2+ε

< p < 1, 0 < q ≤ ∞, 1− ε < s < 1, 2
(

1
p
− 1
)
< s− 1 + ε.

(5.22)

Finally, by Theorem 3.24 and (2.43), (4.31), we also have

P∆2 : WA
(
B∞,∞s (∂Ω)

)
−→ B∞,∞1+s (Ω) ∩Ker ∆2 isomorphically if 0 < s < ε. (5.23)

Interpolating amongst (5.22), (5.21) and (5.23) by the complex method (cf. (4.82) and
Theorem 4.15), we see that

P∆2 : WA
(
Bp,q
s (∂Ω)

)
−→ Bp,q

1+s+ 1
p

(Ω) ∩Ker ∆2 boundedly

if 0 < q ≤ ∞ and s, p satisfy one of the conditions in (5.14).
(5.24)

Granted Theorem 4.19, the above reasoning shows that the problem (5.15)-(5.16) has a
solution satisfying (5.17) whenever s, p, q are as in the second line of (5.24).

The reasoning for (5.18) is similar. The most notable difference is that we specialize
(5.24) to the case when p = q and then invoke (4.62), in order to switch from Besov to
Triebel-Lizorkin spaces in Ω.

Let us now present an alternative argument for this existence result which has a couple of
attractive features. First, this directly yields uniqueness for (5.15) for the full range of indices
indicated in the statement of the theorem and, second, it provides a better heuristic under-
standing of the fact that the region {(s, 1/p) ∈ (0, 1)×(0, 1) : s, p satisfy either (I) or (II) in (5.14)}
is symmetric with respect to the point (1/2, 1/2). Specifically, Proposition 4.11 and Propo-
sition 4.10, allow us to rephrase the existence result implicit in (5.24) by saying that

∆2 : Bp,q

1+s+ 1
p
,z

(Ω) −→ Bp,q

s+ 1
p
−3

(Ω) is an onto operator

if 0 < q ≤ ∞ and s, p satisfy one of the conditions in (5.14).
(5.25)
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With this in hand, and recalling that the spaces in question form complex interpolation
scales, it follows from Theorem 2.10 in [23] that the operator under discussion is actually an
isomorphism for the same range of indices, since it is invertible when p = q = 2 and s = 1/2.
Indeed, the fact that

∆2 : B2,2
2,z (Ω) −→ B2,2

−2(Ω) isomorphically (5.26)

is essentially Lax-Milgram’s lemma for the bi-Laplacian.
Note that the operator in (5.25) behaves invariantly under duality if one restricts attention

to indices p, q ∈ (1,∞) – cf. formulas (4.35)-(4.36). This and interpolation (cf. the claim
about (4.98)) then show that the maximal region of invertibility (for ∆2 in (5.25)) within
the square (s, 1/p) ∈ (0, 1)× (0, 1) is necessarily an open, convex region, which is symmetric
with respect to the point (1/2, 1/2).

Returning to the mainstream discussion, we may conclude that ∆2 maps Bp,q

1+s+ 1
p
,z

(Ω)

isomorphically into Bp,q

s+ 1
p
−3

(Ω) whenever s, p, q are as in (5.14). Once again by virtue of

Theorem 4.19 and Propositions 4.11-4.10, this amounts to the well-posedness of (5.15) in the
said range of indices.

In the case of Triebel-Lizorkin spaces, we follow the same strategy with one significant
difference. Specifically, in (5.25), we shall employ the scale {u ∈ F p,q

s+1/p+1(Ω) : Tr#u = 0},
indexed by 0 < p, q <∞, (n−1)(1/p−1)+ < s < 1, in place of F p,q

s+1/p+1,z(Ω). That the former
family of spaces makes up a complex interpolation scale is ensured by Proposition 4.24. The
reason we embark on this alternative route is to avoid using Propositions 4.11-4.10 which, in
the case of Triebel-Lizorkin spaces, would require imposing the restriction min {1, p} ≤ q <
∞. �

Having disposed of Theorem 5.3, we finally tackle the

Proof of Theorem 1.1. Denote by Rε the collection of all pairs (s, 1/p) satisfying either I or
II in (5.14). The claim we make is that

∆2 : Bp,q

s+ 1
p

+1,z
(Ω) −→ Bp,q

s+ 1
p
−3

(Ω) is an isomorphism

whenever (s, 1/p) ∈ Rε and 0 < q <∞.
(5.27)

The proof of this claim is divided into three steps.

Step 1. The operator in the first line of (5.27) is one-to-one, whenever (s, 1/p) ∈ Rε and
0 < q < ∞. To see this, fix a covering of Ω̄ with finitely many open sets {Oj}1≤j≤N , such
that

Ωj := Oj ∩ Ω is a star-like Lipschitz domain, for every j ∈ {1, ..., n}, (5.28)

Also, select a smooth partition of unity
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N∑
j=1

ψ ≡ 1 near Ω̄, ψj ∈ C∞0 (R3), 0 ≤ ψj ≤ 1, suppψj ⊂ Oj, 1 ≤ j ≤ N. (5.29)

Assume next that (s, 1/p) ∈ Rε, 0 < q <∞, and that u ∈ Bp,q
s+1/p+1,z(Ω) is such that ∆2u = 0

in Ω. Then, for every j,

∆2(ψju) = (∆2ψj)u+ 2〈∇∆ψj,∇u〉+ 2∆2ψj∆
2u

+2〈∇ψj,∇∆u〉 ∈ Bp,q
s+1/p−2(Ω), (5.30)

so that (by (4.47)),

vj := (ψju)
∣∣∣
Ωj

=⇒ vj ∈ Bp,q
s+1/p+1,z(Ωj) and ∆2vj ∈ Bp,q

s+1/p−2(Ωj). (5.31)

Furthermore, we claim that

ṽj|Ω = ψju in Ω, for every j = 1, 2, ..., N, (5.32)

where tilde denotes the extension by zero into R3. Indeed, the difference ṽj − ψ̃ju is a
function in Bp,q

s+1/p+1(R3) whose support is contained in ∂Ωj. Thus, by Proposition 4.12, this

necessarily vanishes, proving (5.32).
Moving on, observe that

Bp,q
s+1/p−2(Ωj) ↪→ Bpo,qo

so+1/po−3(Ωj) whenever (so, 1/po) ∈ ∆s,p and 0 < qo <∞, (5.33)

where

∆s,p is the open triangular region with vertices at

A1 = (0, 1
p

+ s+ 1), A2 = (0, 1
p
− s

2
− 1

2
), A3 = (s+ 1, 1

p
).

(5.34)

Note that A1A2 is vertical and the slopes of A1A3, A2A3 are −1 and 1
2
, respectively. Based

on Proposition 4.26, (5.31)-(5.34), the fact that (5.27) holds with Ω replaced by the star-like
Lipschitz domain Ωj (cf. Theorem 5.3) and the claim about (4.98), we may then infer that

vj ∈ Bpo,qo
so+1/po+1,z(Ωj) whenever (so, 1/po) ∈ ∆s,p and 0 < qo <∞. (5.35)

Since this is valid for every j, we then obtain u =
∑N

j=1 ṽj|Ω ∈ Bpo,qo
so+1/po+1,z(Ω) whenever

(so, 1/po) ∈ ∆s,p and 0 < qo < ∞. That is, u exhibits better smoothing properties on the
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Besov scale than originally assumed. Iterating this scheme finitely many times eventually
yields u ∈ B2,2

2,z (Ω). Given that u is biharmonic, this forces u = 0 by (5.26).

Step 2. The operator in the first line of (5.27) has closed range, whenever (s, 1/p) ∈ Rε

and 0 < q < ∞. To justify this, retain some of the notation introduced in the previous
step. Then for every u ∈ Bp,q

s+ 1
p

+1,z
(Ω), using (5.32), (5.31), the theory developed in star-like

Lipschitz domains, and the boundedness of the restriction and extension by zero operators,
we have

‖u‖Bp,q
s+ 1

p+1,z
(Ω) ≤ C

N∑
j=1

‖ṽj|Ω‖Bp,q
s+ 1

p+1,z
(Ω) ≤ C

N∑
j=1

‖ṽj‖Bp,q
s+ 1

p+1
(R3)

≤ C

N∑
j=1

‖vj‖Bp,q
s+ 1

p+1,z
(Ωj) ≤ C

N∑
j=1

‖∆2vj‖Bp,q
s+ 1

p−3
(Ωj)

≤ C

N∑
j=1

‖(ψj∆2u)|Ωj‖Bp,q
s+ 1

p−3
(Ωj) + C

N∑
j=1

‖u|Ωj‖Bp,q
s+ 1

p−2
(Ωj)

≤ C‖∆2u‖Bp,q
s+ 1

p−3
(Ω) + C‖u‖Bp,q

s+ 1
p−2

(Ω). (5.36)

Since the embedding Bp,q

s+ 1
p
−2

(Ω) ↪→ Bp,q

s+ 1
p
−3

(Ω) is compact, the above estimate shows that,

modulo a compact operator, ∆2 in the first line of (5.27) is bounded from below. In turn,
this ensures that the operator in question has closed range (in the context of Banach spaces
this is well-known; for an extension to the case of quasi-Banach spaces – which is really what
is needed here – see the discussion in the appendix of [39]).

Step 3. The operator in the first line of (5.27) is invertible, whenever (s, 1/p) ∈ Rε and
0 < q < ∞. From Step 1 and Step 2 we know that the operator under discussion is an
isomorphic embedding for all values of parameters as in the second line of (5.27). Also,
from (5.26), this is actually an isomorphism when p = q = 2 and s = 1/2. Granted that
the spaces in question are complex interpolation scales, the global invertibility result from
Theorem 2.10 in [23] then proves that ∆2 in (5.27) is invertible.

This concludes the proof of the claim made at the beginning of the proof (cf. (5.27)). In
turn, using the trace/extension results proved in § 4.4, this translates into the well-posedness
of (1.2) for the indicated range of indices.

Consider next (1.5). We start by specializing (5.27) to the case p = q, thus obtaining

∆2 : F p,p

s+ 1
p

+1,z
(Ω) −→ F p,p

s+ 1
p
−3

(Ω) is an isomorphism if (s, 1/p) ∈ Rε. (5.37)

We now make the claim that

Tr# : Ker ∆2 ∩ F p,p

s+ 1
p

+1
(Ω) −→ WA

(
Bp,p
s (∂Ω)

)
is an isomorphism whenever (s, 1/p) ∈ Rε.

(5.38)
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Indeed, its null-space is precisely

Ker ∆2 ∩ {u ∈ F p,p

s+ 1
p

+1
(Ω) : Tr#u = 0} = Ker ∆2 ∩ F p,p

s+ 1
p

+1,z
(Ω) = 0, (5.39)

by Propositions 4.10-4.11 and (5.37). To see that Tr# in (5.38) is also onto, fix p and s
such that (s, 1/p) ∈ Rε and let ḟ ∈ WA

(
Bp,p
s (∂Ω)

)
be arbitrary. Then, by Theorem 4.19,

v := Ex#(ḟ) satisfies v ∈ F p,p
s+1/p+1(Ω) and Tr#v = ḟ . Thus, G := ∆2v ∈ F p,p

s+1/p−3(Ω) and so

(∆2)−1G ∈ F p,p

s+ 1
p

+1,z
(Ω) =

{
w ∈ F p,q

s+ 1
p

+1
(Ω) : Tr#w = 0

}
, (5.40)

once again by Propositions 4.10-4.11. If we set u := v − (∆2)−1G then

u ∈ Ker ∆2 ∩ F p,p

s+ 1
p

+1
(Ω) and Tr#u = Tr#v − Tr#

(
(∆2)−1G

)
= ḟ , (5.41)

which shows that Tr# in (5.38) is onto and, hence, concludes the proof of (5.38). In fact, by
virtue of Theorem 4.16, (5.38) self-improves to

Tr# : Ker ∆2 ∩ F p,q

s+ 1
p

+1
(Ω) −→ WA

(
Bp,p
s (∂Ω)

)
isomorphically, if 0 < q <∞ and (s, 1/p) ∈ Rε.

(5.42)

In turn, (5.42) readily entails the well-posedness of the problem (1.2) for the range of indices
as in the second line of (5.42). �

We wish to point out that the exterior versions of (5.15), (5.18) can be also shown to
be well-posed under the same assumptions on the indices as in Theorem 5.3. To illustrate
this idea, we elaborate briefly on the exterior version of (5.15) written with G = 0, in
order to minimize the technicalities. Specifically, if Ω is a bounded Lipschitz domain in
Rn, define Bp,q

s (Ω̄−; loc) as the subspace of distributions u in Ω− with the property that
u|B(0,R)\Ω̄ ∈ Bp,q

s (B(0, R) \ Ω̄) for every R > 0. Then the exterior boundary value problem



∆2u = 0 in Ω−,

Tru = f0 ∈ Bp,q
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,q
s (∂Ω), 1 ≤ j ≤ 3,

u ∈ Bp,q

s+ 1
p

+1
(Ω̄−; loc),

u decays as in (2.108),

(5.43)

is well-posed whenever either of the conditions in (5.14) is satisfied. Indeed, this is a con-
sequence of Theorem 1.1 and the results in § 2.4. In fact, a similar result is also valid on
the Triebel-Lizorkin scale. For a related version of (5.43), with a different type of decay
condition, see the discussion at the end of § 5.2.
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We conclude this subsection with the

Proof of Corollary 1.5. For ε > 0 fixed, let Hε be the pentagonal region depicted in Figure 1
(in the statement of Corollary 1.3). Since

p ∈ (2,∞) and α+2
3

= 1
p

=⇒ (α, 1/p) ∈ Hε, (5.44)

by Theorem 1.3 and Theorem 1 on p. 32 of [48], we obtain

∇G : Bp,1
3
p
−3

(Ω) −→ Bp,1
3
p

(Ω) ↪→ C(Ω̄) for each p ∈ (2,∞). (5.45)

The fact that one can actually allow p ∈ (0,∞) is then a consequence of the monotonicity
of the scale Bp,1

3/p−3(Ω). �

5.2 The biharmonic single layer

We begin with some functional analytic preliminaries. Let X be a Banach space, and denote
by X ∗ its (topological) dual and by σ(X ,X ∗) the weak topology on X . Also, denote by
σ(X ∗,X ) the weak-∗ topology on X ∗. It is well-known (indeed, a standard consequence of
the Hahn-Banach Theorem) that a linear subspace V ⊆ X , V is (norm) closed if and only
if V is σ(X ,X ∗)-closed.

Given two arbitrary linear subspaces V ⊆X and W ⊆X ∗ define the annihilators

V ⊥ := {Λ ∈X ∗ : Λ(x) = 0, ∀x ∈ V }, (5.46)

W⊥ := {x ∈X : Λ(x) = 0, ∀Λ ∈ W}. (5.47)

Then V ⊥ ⊆ X ∗, W⊥ ⊆ X are (norm) closed subspaces, and (cf. Theorem 4.7 on p. 96 in
[47])

(V ⊥)⊥ is the norm-closure of V in X , and (5.48)

(W⊥)⊥ is the σ(X ∗,X )-closure of W in X ∗. (5.49)

Denote by 〈·, ·〉 the canonical pairing between X and X ∗.

Proposition 5.4. Assume that X is a Banach space and that S : X ∗ → X is a linear,
bounded operator, with closed range, and which satisfies the following additional property.
There exists a finite dimensional subspace V of X such that

Λ ∈ V ⊥ and 〈SΛ,Λ〉 = 0 =⇒ Λ = 0. (5.50)

Then S is Fredholm, with index zero, and
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S : V ⊥ −→X /V (5.51)

is an isomorphism. Furthermore, denoting by KerS the kernel of the operator S : X ∗ →X ,
there holds

dim(KerS) ≤ dimV. (5.52)

Proof. We claim that

S(V ⊥)⊕ V = X . (5.53)

To justify this, note that if x ∈ V ∩S(V ⊥) then there exists Λ ∈ V ⊥ such that x = SΛ ∈ V .
This forces 〈SΛ,Λ〉 = 〈x,Λ〉 = 0, hence Λ = 0 by (5.50). Thus the sum in (5.53) is direct.

Next, observe that (5.50) entails V ⊥ ∩
(
S(V ⊥)

)⊥
= {0}. Using this we may then write

(S(V ⊥)⊕V )⊥ ⊆ V ⊥∩(S(V ⊥))⊥ = {0} which, given (5.48), proves that S(V ⊥)⊕V is (norm)
dense in X . Therefore, we are left with showing that S(V ⊥)⊕ V is (norm) closed in X . In
turn, since a finite dimensional augmentation of a linear subspace preserves its closedness,
this is going to be a consequence of the fact that S(V ⊥) is (norm) closed in X . As far
as the latter issue is concerned, the fact that the operator S : X ∗/V ⊥ → SX ∗/S(V ⊥) is
well-defined, linear and onto implies (cf. also § 4.8 on p. 96 in [47])

dim [SX ∗/S(V ⊥)] ≤ dim [X ∗/V ⊥] = dim [V ∗] = dim [V ] < +∞. (5.54)

It follows then that the operator S : V ⊥ → SX ∗, acting linearly and boundedly between
Banach spaces (recall that it is assumed that S has closed range) has a finite codimensional
range. Based on this we may then conclude (cf. Lemma 2 on p. 156 in [40]) that S(V ⊥) is
(norm) closed in SX ∗ and, hence, in X . This finishes the proof of (5.53).

With (5.53) in hand and further relying on (5.51), it is then easy to show that the
operator in (5.51) is an isomorphism. This and standard functional analysis then give that
S : X ∗ →X is Fredholm with index zero.

Consider now (5.52). Take a linear basis {v1, ..., vd} of V , where d := dimV , and denote
by {Λ1, ...,Λd} ⊂ X ∗ its dual system, i.e., 〈Λj, vk〉 = δjk for every j, k ∈ {1, ..., d}. In
particular, Λ1, ...,Λd are linearly independent. Finally, set

W := span {Λ1, ...,Λd}, (5.55)

and introduce the linear operator

π : KerS −→ W, π(Λ) :=
d∑
j=1

〈Λ, vj〉Λj, (5.56)
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where KerS ⊂ X ∗ is the kernel of the operator S : X ∗ → X . Then π in (5.56) is one-to-
one. Indeed, let Λ ∈ X ∗ be such that SΛ = 0 and π(Λ) = 0. Since π(Λ) = 0 is equivalent
to the membership of Λ in V ⊥, and the operator S in (5.51) is an isomorphism, we may
conclude that Λ = 0, as wanted. The fact that the operator π in (5.56) is one-to-one now
readily implies (5.52), since dimW = d. �

Let us now introduce a suitable concept of single layer operator associated to the bi-
Laplacian. Following the recipe in [36], given a bounded Lipschitz domain Ω in Rn, we
set

(ṠΛ)(X) :=
〈

Λ , Tr#

[
B(X − ·)

]〉
=

〈
Λ(Y ) ,

(
B(X − Y ),∇Y [B(X − Y )]

)〉
, X ∈ Rn \ ∂Ω, (5.57)

where Λ is a functional on the space of Whitney arrays (exhibiting a certain amount of
smoothness – more details on this later). The reader is advised that this is a different
version than the one studied in the (mostly engineering) literature. Indeed, the “standard”
biharmonic single layer reads

Sst(F,G)(X) :=

∫
∂Ω

B(X − Y )F (Y ) dσ(Y )

+

∫
∂Ω

∂ν(Y )[B(X − Y )]G(Y ) dσ(Y ), X ∈ Rn \ ∂Ω, (5.58)

where F,G are functions defined on the boundary of the Lipschitz domain Ω ⊂ Rn. We
wish to briefly elaborate on the relationship between the single layer in (5.57) and the one
in (5.58) and explain why, in the current context, (5.57) is more suitable for the purposes
we have in mind.

While dealing with the inhomogeneous Dirichlet problem for the bi-Laplacian ∆2u = f ,

u ∈
◦

W 2,2(Ω) (the closure of C∞0 (Ω) in the Sobolev space W 2,2(Ω)), it is useful to have an
integral operator which maps boundary functions into the energy space W 2,2(Ω). Hence,
one desirable property for the operator (5.58) is that it maps into W 2,2(Ω). Homogeneity
considerations then dictate that

Sst : B2,2
−3/2(∂Ω)⊕B2,2

−1/2(∂Ω) −→ W 2,2(Ω), boundedly. (5.59)

The problem with (5.59) is that, on the boundary of a Lipschitz domain, the Besov space
B2,2
−3/2(∂Ω) is not well-defined. Thus, if one insists that arbitrary Lipschitz domains are

considered, it is necessary to reconfigure the operator (5.58) as to avoid the aforementioned
problem. To this end, given two functions F,G on ∂Ω, assume that there exist functions
g0, g1, ..., gn such that

F = g0 + ∂τjk(νkgj), G = νjgj. (5.60)
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If that is the case, manipulate the right-hand side of (5.58) as follows

Sst(F,G)(X) =

∫
∂Ω

B(X − Y )(g0 + ∂τjk(νkgj))(Y ) dσ(Y )

+

∫
∂Ω

∂ν(Y )[B(X − Y )](νjgj)(Y ) dσ(Y ) (5.61)

=

∫
∂Ω

B(X − Y )g0(Y ) dσ(Y ) +

∫
∂Ω

∂Yj [B(X − Y )]gj(Y ) dσ(Y ),

after integrating by parts on the boundary. Hence,

Sst(F,G)(X) =
〈

Λg0,...,gn(Y ) ,
(
B(X − Y ),∇Y [B(X − Y )]

)〉
= (ṠΛg0,...,gn)(X), (5.62)

where Λg0,...,gn is the functional acting on a Whitney array ḟ = (f0, f1, ..., fn) according to

〈Λg0,...,gn , ḟ〉 :=
n∑
j=0

∫
∂Ω

fjgj dσ. (5.63)

In summary:

given F,G, then Sst(F,G) = ṠΛg0,...,gn provided Λg0,...,gn is a

functional on Whitney arrays build out of g0, ..., gn as in (5.63) (5.64)

and, further, the gj’s are related to F and G as in (5.60).

The question now arises:

what functions F,G can be represented as in (5.60)? (5.65)

To answer this, set

Φ(Λg0,g1,...,gn) := (F,G) where F,G are as in (5.60). (5.66)

We claim that this mapping induces a well-defined, bounded linear operator

Φ : WA
(
Lp
′
(∂Ω)

)∗ −→ Lp−1(∂Ω)⊕ Lp(∂Ω), (5.67)

in the following sense. By the Hahn-Banach Theorem, any functional Λ ∈ WA
(
Lp
′
(∂Ω)

)∗
is

as in (5.63), for some not necessarily unique (n + 1)-tuple of functions g0, ..., gn ∈ Lp(∂Ω).
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Then the definition (5.66) is unambiguous, in the sense the outcome is unaffected by the
particular choice of gj’s as above. A moment’s reflection shows that this is equivalent to
proving that, given g0, ..., gn ∈ Lp(∂Ω),

n∑
j=0

∫
∂Ω

fjgj dσ = 0 for all ḟ ∈ WA
(
Lp
′
(∂Ω)

)
=⇒ F,G in (5.60) vanish. (5.68)

To see this, we note that

〈Λg0,...,gn , Q(F ′, G′)〉 = 〈(F,G), (F ′, G′)〉 (5.69)

for every g0, ..., gn ∈ Lp(∂Ω), every (F ′, G′) ∈ Lp
′

1 (∂Ω)⊕Lp′(∂Ω), and with (F,G) as in (5.60);
this is clear from definitions. Since, according to (3.26)-(3.27), Q(F ′, G′) is a Whitney array
in WA

(
Lp
′
(∂Ω)

)
, (5.68) follows from (5.69).

Formula (5.69) also proves that, in the context of (5.67), the operator Φ is the adjoint
of Q in (3.27). Since, as mentioned in the remark following the proof of Proposition 3.2,
Q in (3.27) is an isomorphism, it follows that Φ in (5.67) is an isomorphism as well. As a
consequence, in relation to question (5.65), we infer that any (F,G) ∈ Lp−1(∂Ω) ⊕ Lp(∂Ω)
can be represented as Φ(Λg0,...,gn) for some g0, ..., gn ∈ Lp(∂Ω). Hence,

Sst = Ṡ ◦ Φ−1 as operators on Lp−1(∂Ω)⊕ Lp(∂Ω). (5.70)

That is, the two biharmonic single layers (5.57), (5.58) agree up to an isomorphism of
Lp−1(∂Ω)⊕ Lp(∂Ω) onto WA

(
Lp
′
(∂Ω)

)∗
. However, as opposed to (5.59) which requires Ω to

be smoother than Lipschitz, for the operator (5.57) we have that

Ṡ : WA
(
B2,2

1/2(∂Ω)
)∗ −→ W 2,2(Ω) (5.71)

is well-defined and bounded (the different behavior is due to the fact that, generally speaking,
Φ does not map onto B2,2

−3/2(∂Ω)⊕ B2,2
−1/2(∂Ω)). Operators such as (5.57) have been studied

in [36], in more generality. Here we record a couple of results established in [36] which are
going to play a significant role in the present work. First,

Ṡ : WA
(
Bp,q

1−s(∂Ω)
)∗ −→ Bp′,q′

1+s+ 1
p′

(Ω) (5.72)

is well-defined and bounded whenever 1 < p, q < ∞, and 0 < s < 1 (as is customary,
1/p+ 1/p′ = 1/q + 1/q′ = 1). Furthermore, similar results are valid on the Triebel-Lizorkin
scale, and for the exterior version of (5.72). In addition, with Tr# as in Theorem 4.19, the
boundary biharmonic single layer

Ṡ := Tr# ◦ Ṡ : WA
(
Bp,q

1−s(∂Ω)
)∗ −→ WA

(
Bp′,q′

s (∂Ω)
)

(5.73)
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is also well-defined and bounded if 1 < p, q <∞ and 0 < s < 1.
Moving on, for a sufficiently nice function u in Ω, define

∂#,+
ν u :=

(
(∂ν∆u)

∣∣∣
∂Ω
, (∂ν∂1u)

∣∣∣
∂Ω
, ..., (∂ν∂nu)

∣∣∣
∂Ω

)
. (5.74)

Similarly we introduce ∂#,−
ν u for sufficiently nice functions u defined in Ω−. Formula (5.74)

is designed such that if u and v are two reasonably behaved functions in Ω, the following
Green formula holds:

n∑
j,k=1

∫
Ω

(∂j∂ku)(X)(∂j∂kv)(X) dX (5.75)

= −
∫
∂Ω

〈
∂#,+
ν u(X),Tr#v(X)

〉
dσ(X) +

∫
Ω

(∆2u)(X)v(X) dX.

In turn, the identity (5.75) suggests defining

∂#,+
ν : Bp,q

s+ 1
p

+1
(Ω) ∩Ker ∆2 −→ WA

(
Bp′,q′

1−s (∂Ω)
)∗

(5.76)

by setting

〈
∂#,+
ν u, φ

〉
:= −

n∑
j,k=1

∫
Ω

(∂j∂ku)(X)(∂j∂kΦ)(X) dX (5.77)

for every φ ∈ WA
(
Bp′,q′

1−s (∂Ω)
)
, where Φ ∈ Bp′,q′

2−s+ 1
p′

(Ω) is any function with the property that

Tr#Φ = φ. We define

∂#,−
ν : Bp,q

s+ 1
p

+1
(Ω−; loc) ∩Ker ∆2 −→ WA

(
Bp′,q′

1−s (∂Ω)
)∗

(5.78)

analogously to (5.77), with the convention that the extension Φ of φ is taken to have bounded
support.

Proposition 5.5. Assume that Ω is a bounded Lipschitz domain in Rn and fix three indices
1 < p, q < ∞ and 0 < s < 1. Then the above definition of ∂#,+

ν is meaningful, and the
operator in (5.76) is bounded. Furthermore, similar considerations apply to

∂#,+
ν : F p,q

s+ 1
p

+1
(Ω) ∩Ker ∆2 −→ WA

(
Bp′,p′

1−s (∂Ω)
)∗
, (5.79)

and to the exterior versions.
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Proof. In the left-hand side of (5.77), 〈·, ·〉 denotes the duality pairing between functionals

in WA
(
Bp′,q′

1−s (∂Ω)
)∗

and elements of WA
(
Bp′,q′

1−s (∂Ω)
)
, while in the right-hand side of (5.77),

the integral is interpreted as the duality pairing between functionals in (Bp′,q′

−s+1/p′(Ω))∗ =

Bp,q
s+1/p−1(Ω) and functions in Bp′,q′

−s+1/p′(Ω). That the latter is meaningful is ensured by (4.35)-

(4.36) and (4.39).
The fact that the right-hand side of (5.77) is independent of the choice of the function

Φ ∈ Bp′,q′

2−s+ 1
p′

(Ω) satisfying Tr#Φ = φ is a consequence of Propositions 4.10-4.11. The

boundedness of the operator in (5.76) is then implicit in the above arguments. Similar
considerations apply to the conormal derivative on Triebel-Lizorkin spaces and to its exterior
version. �

The proposition recorded below, dealing with the boundary behavior of the harmonic
single layer, has been established in [36]. To state it, denote by Tr±# the boundary traces,
taken from within Ω±, as in Theorem 4.19.

Proposition 5.6. Let Ω be a bounded Lipschitz domain in Rn and fix 1 < p, q < ∞ and
0 < s < 1. Also, let p′, q′ ∈ (1,∞) be such that 1/p+ 1/p′ = 1/q + 1/q′ = 1. Then

∂#,−
ν ṠΛ− ∂#,+

ν ṠΛ = Λ, (5.80)

Tr+
#ṠΛ = Tr−#ṠΛ, (5.81)

for each Λ ∈ WA
(
Bp′,q′
s (∂Ω)

)∗
.

For each k ∈ N0 we denote by Pk the set of polynomials in Rn of degree less than or equal
to k, and make the convention that P−1 := {0}. Also, recall that η(X) ≡ X for X ∈ Rn.

Proposition 5.7. Assume that Ω is a bounded Lipschitz domain in Rn, where n ≥ 3, n 6= 4.
Let α ∈ Nn

0 , k ∈ N ∪ {0,−1}, and fix 1 < p, q < ∞, 0 < s < 1. Then for each functional
Λ ∈ WA

(
Bp,q
s (∂Ω)

)∗
there holds

∂αṠΛ(X) =
∑
|β|≤k

(−1)|β|

β!
(∂α+βB)(X)〈Λ,Tr#(ηβ)〉+O(|X|3−|α|−n−k) as X →∞ (5.82)

(where the sum is void if k = −1). If, in addition,

〈Λ,Tr# p〉 = 0 ∀ p ∈ Pk, (5.83)

(which is a void condition if k = −1) then

∂αṠΛ(X) = O(|X|3−|α|−n−k) as X →∞. (5.84)
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Proof. The case k = −1 is clear. Fix α ∈ Nn, k ∈ N0 and Λ ∈ WA
(
Bp,q
s (∂Ω)

)∗
. Then, based

on (5.57), for X ∈ Rn \ ∂Ω we may write

∂αṠΛ(X) = 〈Λ,Tr#

(
(∂αB)(X − ·)− P k,α

X

)
〉+ 〈Λ̇,Tr#(P k,α

X )〉 (5.85)

where P k,α
X is the Taylor polynomial of degree k for the function ∂αB(X − ·) about 0. That

is, generally speaking,

P `,α
X (Y ) :=

∑
|β|≤`

(−1)|β|

β!
Y β(∂α+βB)(X) (5.86)

if ` ≥ 0 and P `,α
X (Y ) ≡ 0 if ` < 0. Thus,

〈Λ,Tr#(P k,α
X )〉 =

∑
|β|≤k

(−1)|β|

β!
(∂α+βB)(X)〈Λ,Tr#(ηβ)〉. (5.87)

It is straightforward to check that for every multi-index γ (of any length) we have

∂γY P
k,α
X (Y ) = (−1)|γ|P

k−|γ|,α+γ
X (Y ). (5.88)

Therefore, for every γ,

∣∣∣∂γY [(∂αB)(X − Y )− P k,α
X (Y )

]∣∣∣ = |(∂α+γB)(X − Y )− P k−|γ|,α+γ
X (Y )|

≤ C sup
Z∈[0,Y ]

|δ|=k+|α|+1

|(∂δB)(X − Z)||Y |k+1−|γ| (5.89)

by (5.88) and Taylor’s theorem. Since ∇k+|α|+1B(X) = O(|X|3−|α|−n−k) as X → ∞, (5.89)
gives that ‖Tr#

(
(∂αB)(X − ·) − P k,α

X

)
‖WA(Bp,qs (∂Ω)) = O(|X|3−|α|−n−k) as X → ∞. Conse-

quently, 〈Λ,Tr#

(
(∂αB)(X−·)−P k,α

X

)
〉 = O(|X|3−|α|−n−k). Now (5.82) follows from this and

(5.87), while (5.84) is immediate from (5.82). �

Proposition 5.8. Let Ω be a bounded Lipschitz domain in R3. Then, there exists ε =
ε(Ω) > 0 such that for each 1 < q < ∞ and each (s, 1/p) ∈ (0, 1) × (0, 1) satisfying one of
the conditions in (1.1) there holds

Ṡ : WA
(
Bp,q

1−s(∂Ω)
)∗ −→ WA

(
Bp′,q′

s (∂Ω)
)

is Fredholm, (5.90)

where 1/p+ 1/p′ = 1/q + 1/q′ = 1.
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Proof. Given Ω ⊂ R3, bounded Lipschitz domain, we let ε be as in the statement of Theo-
rem 1.1. Fix next 1 < p, q <∞ and s ∈ (0, 1) such that one of the conditions in (1.1) holds.
From Proposition 5.5 and (5.72) we know that there exists C > 0 such that

‖∂#,+
ν ṠΛ‖

WA(Bp
′,q′

1−s (∂Ω))∗
≤ C‖ṠΛ‖Bp,q

s+ 1
p+1

(Ω), (5.91)

uniformly for Λ ∈ WA
(
Bp′,q′

1−s (∂Ω)
)∗

. Next, fix R > 0 such that Ω ⊂ BR(0) and pick a function
ξ ∈ C∞0 (BR(0)), with ξ ≡ 1 near Ω̄. Then, much as before (working with BR(0) \ Ω̄ in place
of Ω), we have

‖∂#,−
ν ṠΛ‖

WA(Bp
′,q′

1−s (∂Ω))∗
≤ C‖ṠΛ‖Bp,q

s+ 1
p+1

(BR(0)\Ω̄), (5.92)

uniformly for Λ ∈ WA
(
Bp′,q′

1−s (∂Ω)
)∗

. Then, using the jump relations (5.80), (5.91) and (5.92)

‖Λ‖
WA(Bp

′,q′
1−s (∂Ω))∗

≤ ‖∂#,+
ν ṠΛ‖

WA(Bp
′,q′

1−s (∂Ω))∗
+ ‖∂#,−

ν ṠΛ‖
WA(Bp

′,q′
1−s (∂Ω))∗

≤ C‖ṠΛ‖Bp,q
s+ 1

p+1
(Ω) + C‖ṠΛ‖Bp,q

s+ 1
p+1

(BR(0)\Ω̄). (5.93)

Going further, using this, (5.73) (with the understanding that Tr# can be taken from either
side of ∂Ω) and the well-posedness results from Theorem 1.1 we obtain

‖Λ‖
WA(Bp

′,q′
1−s (∂Ω))∗

≤ C‖ṠΛ‖WA(Bp,qs (∂Ω)) + C‖ṠΛ‖WA(Bp,qs (∂(BR(0)\Ω̄)))

≤ C‖ṠΛ‖WA(Bp,qs (∂Ω)) + ‖Comp(Λ)‖, (5.94)

where Comp denotes a generic compact operator acting from WA(Bp′,q′

1−s (∂Ω))∗. This shows
that

Ṡ : WA
(
Bp,q

1−s(∂Ω)
)∗ −→ WA

(
Bp′,q′
s (∂Ω)

)
has closed range

and finite dimensional kernel, whenever 1 < q <∞ and

(s, 1/p) ∈ (0, 1)2 satisfies one of the conditions in (1.1).

(5.95)

Now, the conclusion of Proposition 5.8 follows from (5.95) by duality and simple functional
analytic arguments since Ṡ in (5.73) is formally self-adjoint and the region of indices s, p, q
described in the last line of (5.95) is invariant to duality. �

To state our next result, recall (5.46) and that P1 stands for the space of affine mappings
of the Euclidean space. Also, given a Lipschitz domain Ω, set Ṗ1 := {Tr#p : p ∈ P1}.
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Theorem 5.9. Let Ω be a bounded Lipschitz domain in R3. Then the operator induced by
the biharmonic single layer,

Ṡ : WA
(
Bp,q

1−s(∂Ω)
)∗ −→ WA

(
Bp′,q′
s (∂Ω)

)
(5.96)

is an isomorphism whenever

1 < p, q <∞ and s ∈ (0, 1) satisfy one of the conditions in (1.1). (5.97)

Proof. We start by claiming that the operator

Ṡ : {Λ ∈ WA
(
Bp,q

1−s(∂Ω)
)∗

: Λ ∈ Ṗ⊥0 } −→ WA
(
Bp′,q′
s (∂Ω)

)/
Ṗ0, (5.98)

is an isomorphism whenever (5.97) holds. The fact that this operator is Fredholm for the
indicated range of indices is a direct consequence of Proposition 5.8. Then, cf. [23], the
index of the operator (5.98) is constant with respect to s, p, q. If we are able to show that

Ṡ : {Λ ∈ WA
(
B2,2

1/2(∂Ω)
)∗

: Λ ∈ Ṗ⊥0 } −→ WA
(
B2,2

2 (∂Ω)
)/
Ṗ0 is an isomorphism, (5.99)

it is then easy to show (via embeddings and elementary functional analysis) that the claim
about the operator (5.98) holds.

We therefore concentrate on proving (5.99). To this end, bring in Proposition 5.4 in
which we take V := Ṗ0, X := WA

(
B2,2

1/2(∂Ω)
)

and S := Ṡ. In this scenario, we claim that

the implication (5.50) holds. To show this, let Λ ∈ Ṗ⊥0 be such that 〈ṠΛ,Λ〉 = 0. Also, let
R > 0 be such that Ω̄ ⊂ BR(0). Applying (5.75) for u = v := ṠΛ defined, respectively, in Ω
and BR(0) \ Ω̄, and recalling (5.80)-(5.81) we obtain

∑
j,k

∫
Ω

|∂j∂kṠΛ|2 dX +
∑
j,k

∫
BR(0)\Ω̄

|∂j∂kṠΛ|2 dX

= −〈∂#,+
ν ṠΛ, ṠΛ〉+ 〈∂#,−

ν ṠΛ, ṠΛ〉+

∫
|X|=R

〈∂#,−
ν ṠΛ , Tr#ṠΛ〉 dσ

= 〈Λ, ṠΛ〉+

∫
|X|=R

〈∂#,−
ν ṠΛ , Tr#ṠΛ〉 dσ, (5.100)

where, in the last expression above, the first duality pairing is considered on ∂Ω, and the
pairing under the integral sign is taken in the pointwise sense (in which case, the trace,
conormal derivative and surface measure are those associated with ∂BR(0)). In relation to
the latter pairing, Proposition 5.7 and (5.74) give that
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(∂#,−
ν ṠΛ)(X) =

(
(∂ν∆ṠΛ)(X) , ((∂ν∂jṠΛ)(X))j=1,2,3

)
(5.101)

=
(
O(|X|−3), O(|X|−2), O(|X|−2), O(|X|−2)

)
as X →∞,

and

Tr#ṠΛ(X) =
(
O(1), O(|X|−1), O(|X|−1), O(|X|−1)

)
as X →∞, (5.102)

since Λ ∈ Ṗ⊥0 . Thus, in absolute value, the last integral in (5.100) is ≤ CR2R−3, i.e., O(R−1)
as R→∞. Passing to limit in (5.100), we then arrive at

〈Λ, ṠΛ〉 =
∑
j,k

∫
Ω

|∂j∂kṠΛ|2 dX +
∑
j,k

∫
Rn\Ω̄
|∂j∂kṠΛ|2 dX, ∀Λ ∈ Ṗ⊥0 . (5.103)

Since we are assuming 〈Λ, ṠΛ〉 = 0, this forces ∂j∂kṠΛ ≡ 0 in Ω±. Hence, by (5.80),
Λ = ∂#,−

ν ṠΛ− ∂#,+
ν ṠΛ = 0, as desired. Thus, Proposition 5.4 applies, finishing the proof of

the claim about the operator (5.98).
Next, as a consequence of what we have just proved and simple functional analysis, the

operator Ṡ in (5.96) is Fredholm with index zero whenever p, q, s are as in (5.97). Thus, to
complete the proof of the theorem, it suffices to show that Ṡ in (5.96) is one-to-one. With
this goal in mind, let Λ ∈ WA

(
Bp,q

1−s(∂Ω)
)∗

be such that ṠΛ = 0 and write Λ = Λ0 + c1̇ where

Λ0 ∈ Ṗ⊥0 and c ∈ R. Here, 1̇ denotes the Whitney array (1, 0, 0, 0); in particular,

〈Ṡ1̇, 1̇〉 = − 1

8π

∫
∂Ω

∫
∂Ω

|X − Y | dσ(Y ) dσ(X) < 0. (5.104)

Since ṠΛ = 0 we obtain SΛ0 = −c Ṡ1̇, and thus, using (5.103), the self-adjointness of the
operator Ṡ, and (5.104),

0 ≤ 〈ṠΛ0,Λ0〉 = −c〈Ṡ1̇,Λ0〉 = −c〈1̇, ṠΛ0〉 = c2〈Ṡ1̇, 1̇〉 ≤ 0. (5.105)

Consequently c = 0 which forces Λ ∈ Ṗ⊥0 . With this in hand, the fact that the operator Ṡ
in (5.98) is an isomorphism give Λ = 0. This finishes the proof of the theorem. �

Theorem 5.9 and (5.72) then yield the following.

Theorem 5.10. Let Ω be an arbitrary bounded Lipschitz domain in R3. Assume that 1 <
q <∞ and (s, 1/p) ∈ (0, 1)× (0, 1) are such that one of the conditions in (1.1) are satisfied.
Then the unique solution of (1.2) can be expressed as
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u(X) = Bf(X) + Ṡ
(
Ṡ−1ġ

)
(X), X ∈ Ω, (5.106)

where f is the datum in Ω, B is the volume potential with kernel B(X − Y ) (where B(X)
is as in (2.143)), and ġ := ḟ − Tr#Bf , where ḟ = (f0, f1, f2, f3) is the Whitney array of
boundary data.

A similar integral representation is valid for the solution of (1.5).

Let us point out that, as a corollary of Theorem 5.10 and the Hahn-Banach Theorem, formula
(1.6) in the introduction holds.

In closing, we wish to comment on the significance of the invertibility of the operator in
(5.98) in the context of the following exterior boundary value problem



∆2u = 0 in Ω−,

Tru = f0 ∈ Bp,q
s (∂Ω),

Tr (∂ju) = fj ∈ Bp,q
s (∂Ω), 1 ≤ j ≤ 3,

u ∈ Bp,q

s+ 1
p

+1
(Ω̄−; loc),

(5.107)

where Ω is a bounded Lipschitz domain in R3. Compared to (5.43), this time we desire to
solve (5.107) in the class of functions u satisfying the decay condition

(∂αu)(X) = O(|X|−|α|) as X →∞,
for every multi-index α with |α| ≤ 3.

(5.108)

The claim is that (5.107)-(5.108) is well-posed whenever ḟ := (f0, f1, f2, f3) belongs to
WA
(
Bp,q
s (∂Ω)

)
with p, q, s as in (5.97).

The idea is to look for a solution in the form

u(X) = C + ṠΛ(X), X ∈ R3 \ Ω̄, (5.109)

for a suitable functional Λ ∈ WA
(
Bp′,q′

1−s (∂Ω)
)∗ ∩ Ṗ⊥0 and constant C. In concert with Propo-

sition 5.7, this ensures that the decay condition (5.108) is automatically satisfied (this would
have not necessarily been the case had we used Theorem 5.9 and taken u(X) = Ṡ(Ṡ−1ḟ)(X)).
Moreover, given that (5.98) is invertible, Λ and C can be chosen so that (5.109) also solves
(5.107).

To prove uniqueness, note that if u is a solution of the homogeneous version of (5.107)
satisfies and v := u|ΩR where ΩR := BR(0) \ Ω̄ with R > 0 sufficiently large, then v ∈
Bp,q

s+ 1
p

+1
(ΩR) and Tr#,Rv, the trace of v in the sense of (4.76) relative to ∂ΩR, belongs to

WA
(
B2,2

1/2(∂ΩR)
)
. By the well-posedness result for bounded Lipschitz domains, it follows

that v ∈ B2,2
2 (ΩR), i.e. u ∈ B2,2

2 (Ω̄−; loc). Having established this, and granted the decay
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condition (5.108), the same type of reasoning that led to (5.103) yields
∫

R3\Ω̄ |∇∇u|
2 dX =∫

∂Ω
〈Tr#u, ∂

#,−
ν u〉 dσ = 0. Hence, u is locally a linear function in R3 \ Ω̄, which vanishes in

the unbounded component of R3 \ Ω̄. On the bounded components of R3 \ Ω̄ we can use the
fact that u is harmonic with zero trace in order to conclude that u ≡ 0 in R3 \ Ω̄.

5.3 Sharpness of main results

The following is a consequence of Lemma 1 on p. 44 in [48].

Lemma 5.11. Assume that a > 0, 0 < p, q ≤ ∞, s > n(1/p − 1)+, and fix a function
ψ ∈ C∞0 (Rn) with ψ ≡ 1 on B(0, 1). The the following equivalences are true:

ψ(X)|X|a ∈ Bp,q
s (Rn)⇐⇒ either s < n

p
+ a, or s = n

p
+ a and q =∞, (5.110)

and

ψ(X)|X|a ∈ F p,q
s (Rn)⇐⇒ s < n

p
+ a. (5.111)

We now discuss the analogue of the off-diagonal estimates for the Green operator asso-
ciated with the Dirichlet Laplacian in Lipschitz domains, established by B.E.J. Dahlberg in
[10]. Concretely, we have:

Theorem 5.12. Let Ω ⊂ R3 be a bounded Lipschitz domain which is star-like with respect
to the origin. Then there exists ε = ε(Ω) > 0 with the property that if

3
3+ε

< p < 3
2−ε and 1

q
= 1

p
− 1

3
(5.112)

then the operator

G : F p,2
−1 (Ω) −→ F q,2

2,z (Ω) (5.113)

is well-defined and bounded. Furthermore, as far as the well-definiteness of (5.113) is con-
cerned, the conditions in (5.112) are optimal.

Proof. Consider an arbitrary function f ∈ F p,2
−1 (Ω) and construct w ∈ F p,2

3 (Ω) such that
∆2w = f and ‖w‖F p,23 (Ω) ≤ C‖f‖F p,2−1 (Ω). Then Gf = w − u, where u solves ∆2u = 0 in

Ω, Tr#u = Tr#w on ∂Ω. Note that w ∈ F p,2
3 (Ω) ↪→ F q,2

2 (Ω) if 1/q = 1/p − 1/3 and that,
accordingly, Tr#w ∈ WA

(
Bq,q

1−1/q(∂Ω)
)
. Then Theorem 1.1 implies that u ∈ F q,2

2 (Ω) as well,

granted that the point with coordinates (1−1/q, q) belongs to the pentagonal region described
in (5.14). A simple analysis shows that this is always the case whenever 3

2+ε
< q < 3

1−ε , for
some ε = ε(Ω) > 0. The bottom line is that
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f ∈ F p,2
−1 (Ω) =⇒ Gf ∈ F q,2

2,z (Ω) if 3
2+ε

< q < 3
1−ε ,

1
q

= 1
p
− 1

3
. (5.114)

Next, (1.13) with α = 0, p = q = 2, and classical embeddings give

G : F p,2
−1 (Ω) −→ F p∗,2

2,z (Ω) if 3
3+ε

< p < 1, 1
p∗

= 1
p
− 1

3
. (5.115)

Interpolating by the complex method between (5.114) and (5.115) then yields (5.113) in full,
as long as 1

q
= 1

p
− 1

3
and 1 < q < 3

1−ε . Note that the last condition precisely amounts to

asking that (5.112) holds.
We shall now show that the conditions in (5.112) are optimal. To this end, we record the

following consequence of the construction in Lemma 10.6 of [43]. For each θ ∈ (0, π) there
exist a bounded, star-like Lipschitz domain Ωθ in R3 such that

Ωθ ∩B(0, 1) =
{
X = (x1, x2, x3) ∈ B(0, 1) : x3 < (cot θ)

√
x2

1 + x2
2

}
(5.116)

and for which there exists a function u : Ωθ → R satisfying

u ∈ C∞ in Ωθ away from the origin, (5.117)

u(X) ≡ |X|λ(θ)ϕ(X/|X|) for X near 0, (5.118)

ϕ ∈ C∞(S2) and λ(θ)↘ 1 as θ ↘ 0, (5.119)

∆2u ∈ C∞(Ωθ), u = ∂νu = 0 on ∂Ωθ. (5.120)

Note, on the one hand, that conditions (5.117)-(5.120) and Lemma 5.11 ensure that u ∈
W 2,2(Ω) so if we set f := ∆2u ∈ C∞(Ωθ), then Gf = u. On the other hand, (5.117)-(5.120)
and Lemma 5.11 also give

u ∈ F q,2
2 (Ω)⇐⇒ 2 < 3

q
+ λ(θ)⇐⇒ p < 3

3−λ(θ)
↘ 3 as θ ↘ 0, (5.121)

if 1/q = 1/p− 1/3. This proves that the upper bound for p in (5.112) is sharp.
To show that the lower bound is also optimal, we shall rely on duality; cf. (4.35)-(4.36).

Also, with Cs+1
z (Ω̄) := {u ∈ Cs+1(Ω̄) : u|∂Ω = (∇u)|∂Ω = 0}, for s ∈ (0, 1), we have (cf. [4],

[30])

(
F p,2
−1 (Ω)

)∗
= Cs+1

z (Ω̄) if n
n+1

< p < 1 and s = n
(

1
p
− 1
)
. (5.122)

Dualizing the result about the operator (5.113) then yields the following consequences (of
intrinsic interest):
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G : F p,2
−2 (Ω) −→ F q,2

1,z (Ω) if 3
2+ε

< p < 3 and 1
q

= 1
p
− 1

3
, (5.123)

and

G : F p,2
−2 (Ω) −→ Cα+1

z (Ω̄) if 3 < p < 3
1−ε and α = 1− 3

p
. (5.124)

However, (5.117)-(5.120) and Lemma 5.11 give that

u ∈ Cα+1(Ω̄)⇐⇒ α + 1 < 3
p

+ λ(θ)⇐⇒ p < 6
2−λ(θ)

↘ 3 as θ ↘ 0, (5.125)

if α = 1 − 3/p, which proves that the upper bound for p in (5.124) is sharp. This, in turn,
can be traced back to the lower bound for p in (5.112) being sharp. �

The fact that the range of indices in Theorem 1.1 dictates the range of indices in Theo-
rem 5.12 which, in turn, is sharp, shows that Theorem 1.1 is in the nature of best possible.
A more direct argument is as follows. The counterexample in (5.117)-(5.120) readily gives
that the region in Figure 1 described by 1

p
< α+2

3
cannot contain points (α, 1/p) which are

“good” (in the sense of (1.12)-(1.13)) for all bounded Lipschitz domains in R3. Since, by
duality, stability and interpolation,

the subregion of {(α, 1/p) : min {1, α + 2} > 1
p
> max {0, α + 1}}

for which (1.12)-(1.13) are bounded operators is open, convex

as well as symmetric with respect to the point (−1, 1
2
),

(5.126)

it follows that the bound 1
p
> α

3
+ 1 is also, generally speaking, sharp.

We conclude with a remark on the nature of the Green function for the bi-Laplacian in
Lipschitz domains. Let G(X, Y ) be the integral kernel of the Green operator G, i.e., the
Green function associated with the bi-Laplacian in Ω. That is,

Gf(X) =

∫
Ω

G(X, Y )f(Y ) dY, X ∈ Ω, (5.127)

where

∆2
Y [G(X, Y )] = δX(Y ) for X, Y ∈ Ω, and

G(X, Y ) = ∂ν(Y )[G(X, Y )] = 0 for X ∈ Ω, Y ∈ ∂Ω.
(5.128)

Denote by ∇j
X∇k

Y G the integral operator with kernel ∇j
X∇k

Y [G(X, Y )]. Theorem 5.12 then
yields the following. Suppose that Ω ⊂ R3 is a bounded Lipschitz domain. Then there exists
ε = ε(Ω) > 0 such that the following are bounded mappings:
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∇2
X∇1

Y G : hp(Ω) −→ Lq(Ω), if 3
3+ε

< p < 3
2−ε and 1

q
= 1

p
− 1

3
, (5.129)

∇2
X∇1

Y G : L1(Ω) −→ L
3
2
,∞(Ω), the Lorentz space. (5.130)

Above, hp(Ω) := F p,2
0 (Ω) is the local Hardy space in Ω when p ≤ 1, and the Lebesgue space

Lp(Ω) when p > 1. Indeed, the fact that the operator in (5.129) is bounded follows from
Theorem 5.12 and embeddings. In turn, this and real interpolation gives that ∇2

X∇1
Y G

maps the weak Hardy space h1,∞(Ω) boundedly into the Lorentz space L
3
2
,∞(Ω). Since

L1(Ω) ↪→ h1,∞(Ω), we may conclude that the operator in (5.130) is also bounded.
Thus, heuristically, ∇2

X∇1
Y G behaves like a fractional integral operator of order 1 in R3,

albeit only for a restricted range of indices. In particular, the estimate

|∇2
X∇Y [G(X, Y )]| ≤ C|X − Y |−2, X, Y ∈ Ω, (5.131)

may fail in arbitrary Lipschitz domains.
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[42] J. Pipher and G. Verchota, Area integral estimates for the biharmonic operator in Lipschitz
domains, Trans. Amer. Math. Soc., 327 (1991), no. 2, 903–917.

[43] J. Pipher and G. Verchota, The Dirichlet problem in Lp for the biharmonic equation on Lip-
schitz domains, Amer. J. Math., 114 (1992), no. 5, 923–972.

[44] J. Pipher and G. Verchota, A maximum principle for biharmonic functions in Lipschitz and
C1 domains, Comment. Math. Helv., 68 (1993), no. 3, 385–414.

[45] J. Pipher and G.C. Verchota, Maximum principles for the polyharmonic equation on Lipschitz
domains, Potential Anal., 4 (1995), no. 6, 615–636.

[46] J. Pipher and G. Verchota, Dilation invariant estimates and the boundary Garding inequality
for higher order elliptic operators, Ann. of Math., (2) 142 (1995), no. 1, 1–38.

[47] W. Rudin, Functional Analysis, Second Edition, International Series in Pure and Applied
Mathematics, McGraw Hill, Inc., 1991.

[48] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Non-
linear Partial Differential Operators, de Gruyter, Berlin, New York, 1996.

[49] V. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with
respect to Lipschitz domains, J. London Math. Soc., (2) 60 (1999), no. 1, 237–257.

[50] J. K. Seo, Regularity for solutions of biharmonic equation on Lipschitz domain, Bull. Korean
Math. Soc., 33 (1996), no. 1, 17–28.

[51] Z. Shen, The Lp boundary value problems on Lipschitz domains, Adv. Math., 216 (2007),
212–254.

[52] Z. Shen, On estimates of biharmonic functions on Lipschitz and convex domains, J. Geom.
Anal., 16 (2006), no. 4, 721–734.

[53] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math-
ematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970.

[54] H. Triebel, The Structure of Functions, Basel, Birkhäuser, 2001.
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